Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;53(2):327-32.
doi: 10.1109/TBME.2005.862572.

Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes

Affiliations

Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes

Stuart F Cogan et al. IEEE Trans Biomed Eng. 2006 Feb.

Abstract

The use of potential biasing and biphasic, asymmetric current pulse waveforms to maximize the charge-injection capacity of activated iridium oxide (AIROF) microelectrodes used for neural stimulation is described. The waveforms retain overall zero net charge for the biphasic pulse, but employ an asymmetry in the current and pulse widths of each phase, with the second phase delivered at a lower current density for a longer period of time than the leading phase. This strategy minimizes polarization of the AIROF by the charge-balancing second phase and permits the use of a more positive anodic bias for cathodal-first pulsing or a more negative cathodic bias for anodal-first pulsing to maximize charge injection. Using 0.4-ms cathodal-first pulses, a maximum charge-injection capacity of 3.3 mC/cm2 was obtained with an 0.6-V bias (versus Ag/AgCl) and a pulse asymmetry of 1:8 in the cathodal and anodal pulse widths. For anodal-first pulsing, a maximum charge capacity of 9.6 mC/cm2 was obtained with an asymmetry of 1:3 at an 0.1-V bias. These measurements were made in vitro in carbonate-buffered saline using microelectrodes with a 2000 microm2 surface area.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources