Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes
- PMID: 16485762
- DOI: 10.1109/TBME.2005.862572
Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes
Abstract
The use of potential biasing and biphasic, asymmetric current pulse waveforms to maximize the charge-injection capacity of activated iridium oxide (AIROF) microelectrodes used for neural stimulation is described. The waveforms retain overall zero net charge for the biphasic pulse, but employ an asymmetry in the current and pulse widths of each phase, with the second phase delivered at a lower current density for a longer period of time than the leading phase. This strategy minimizes polarization of the AIROF by the charge-balancing second phase and permits the use of a more positive anodic bias for cathodal-first pulsing or a more negative cathodic bias for anodal-first pulsing to maximize charge injection. Using 0.4-ms cathodal-first pulses, a maximum charge-injection capacity of 3.3 mC/cm2 was obtained with an 0.6-V bias (versus Ag/AgCl) and a pulse asymmetry of 1:8 in the cathodal and anodal pulse widths. For anodal-first pulsing, a maximum charge capacity of 9.6 mC/cm2 was obtained with an asymmetry of 1:3 at an 0.1-V bias. These measurements were made in vitro in carbonate-buffered saline using microelectrodes with a 2000 microm2 surface area.
Similar articles
-
In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes.IEEE Trans Biomed Eng. 2005 Sep;52(9):1612-4. doi: 10.1109/TBME.2005.851503. IEEE Trans Biomed Eng. 2005. PMID: 16189975
-
Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation.J Neurosci Methods. 2004 Aug 30;137(2):141-50. doi: 10.1016/j.jneumeth.2004.02.019. J Neurosci Methods. 2004. PMID: 15262054
-
The influence of electrolyte composition on the in vitro charge-injection limits of activated iridium oxide (AIROF) stimulation electrodes.J Neural Eng. 2007 Jun;4(2):79-86. doi: 10.1088/1741-2560/4/2/008. Epub 2007 Mar 8. J Neural Eng. 2007. PMID: 17409482
-
Neural stimulation and recording electrodes.Annu Rev Biomed Eng. 2008;10:275-309. doi: 10.1146/annurev.bioeng.10.061807.160518. Annu Rev Biomed Eng. 2008. PMID: 18429704 Review.
-
Microelectronic packaging for retinal prostheses.IEEE Eng Med Biol Mag. 2005 Sep-Oct;24(5):52-7. doi: 10.1109/memb.2005.1511500. IEEE Eng Med Biol Mag. 2005. PMID: 16248117 Review. No abstract available.
Cited by
-
Electrical performance of penetrating microelectrodes chronically implanted in cat cortex.Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5416-9. doi: 10.1109/IEMBS.2011.6091339. Annu Int Conf IEEE Eng Med Biol Soc. 2011. PMID: 22255562 Free PMC article.
-
A portable neurostimulator circuit with anodic bias enhances stimulation injection capacity.J Neural Eng. 2022 Oct 5;19(5):055010. doi: 10.1088/1741-2552/ac8fb6. J Neural Eng. 2022. PMID: 36067737 Free PMC article.
-
Penetrating microelectrode arrays with low-impedance sputtered iridium oxide electrode coatings.Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:7147-50. doi: 10.1109/IEMBS.2009.5335359. Annu Int Conf IEEE Eng Med Biol Soc. 2009. PMID: 19965266 Free PMC article.
-
Maximizing Charge Injection Limits of Iridium Oxide Electrodes with a Programmable Anodic Bias Circuit.Int IEEE EMBS Conf Neural Eng. 2021 May;2021:540-543. doi: 10.1109/ner49283.2021.9441282. Epub 2021 Jun 2. Int IEEE EMBS Conf Neural Eng. 2021. PMID: 34925702 Free PMC article.
-
Chronic stability of activated iridium oxide film voltage transients from wireless floating microelectrode arrays.Front Neurosci. 2022 Aug 8;16:876032. doi: 10.3389/fnins.2022.876032. eCollection 2022. Front Neurosci. 2022. PMID: 36003961 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources