Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Mar;33(3):273-9.
doi: 10.1111/j.1440-1681.2006.04358.x.

Role of the physicochemical environment in lung development

Affiliations
Review

Role of the physicochemical environment in lung development

Stuart B Hooper et al. Clin Exp Pharmacol Physiol. 2006 Mar.

Abstract

Mechanical forces, exerted on lung tissue via alterations in lung expansion are a major determinant of fetal lung development, having a potent effect on the rate of cellular proliferation, the differentiated state of alveolar epithelial cells and the three-dimensional tissue structure. As a result, much research is currently focused on understanding the molecular mechanisms involved. 2. Although it is likely that mechanical forces exert similar influences on lung development after birth, the types of forces applied to the air-filled lung are very different and more complex. For example, lung aeration causes surface tension to form, which greatly increases lung recoil, leading to a reduction in interstitial tissue and pleural pressures, as well as lung expansion. 3. Because of the loss of the distending influence of lung liquid, the chest wall assumes the role of maintaining resting lung volumes after birth by acting as an external brace that opposes lung recoil. As a result, the distribution of force throughout lung tissue changes markedly. 4. Little is known of how changing the mechanical environment of the lung influences its development after birth, but this has important implications for understanding the impact of assisted ventilation on patients, particularly very preterm infants, who are often ventilated using high positive pressures. 5. Although the application of positive internal distending pressures may, in part, duplicate the fetal environment, the effect of gas versus liquid is unknown and high positive airway pressures are known to adversely affect cardiopulmonary physiology. Understanding the role of mechanical forces in regulating lung development as well as pulmonary physiology in the fetus and newborn is central to improving the care and management of infants suffering respiratory failure.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources