Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006;39(5):865-72.
doi: 10.1016/j.jbiomech.2005.01.030.

Comparing two estimations of the quadriceps force distribution for use during patellofemoral simulation

Affiliations
Comparative Study

Comparing two estimations of the quadriceps force distribution for use during patellofemoral simulation

John J Elias et al. J Biomech. 2006.

Abstract

EMG analysis has indicated that the vastus lateralis and vastus medialis contribute less to the quadriceps moment during knee extension than the physiological cross-sectional areas (PCSA's) of the muscles indicate. Both PCSA- and EMG-based quadriceps force distributions were utilized while computationally simulating knee extension. For both distributions, a 10 degrees increase in the Q-angle and a 50% decrease in the force applied by the vastus medialis were simulated, and the influence of these changes on the resultant force and moment applied by the quadriceps muscles and the patella tendon was quantified. For both quadriceps force distributions, increasing the Q-angle increased the lateral force and the moment acting to rotate the distal patella laterally. Due to the relatively large forces initially attributed to the vastus medialis and vastus lateralis for the PCSA-based quadriceps force distribution, decreasing the vastus medialis force created a large force imbalance between these two muscles. For the PCSA-based quadriceps force distribution, decreasing the vastus medialis force increased the lateral rotation moment and the moment acting to tilt the patella laterally. For the EMG-based quadriceps force distribution, decreasing the vastus medialis force produced relatively little change in the tilt and rotation moments. For both quadriceps force distributions, increasing the Q-angle increased the maximum and mean cartilage pressure during flexion, but decreasing the vastus medialis force only increased the cartilage pressures for the PCSA-based quadriceps distribution. The choice of the initial quadriceps distribution can influence the outcome of patellofemoral simulation when manipulating quadriceps muscle forces.

PubMed Disclaimer

Publication types

LinkOut - more resources