Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb 15;66(4):1940-8.
doi: 10.1158/0008-5472.CAN-05-2036.

Soluble IGF2 receptor rescues Apc(Min/+) intestinal adenoma progression induced by Igf2 loss of imprinting

Affiliations

Soluble IGF2 receptor rescues Apc(Min/+) intestinal adenoma progression induced by Igf2 loss of imprinting

James Harper et al. Cancer Res. .

Abstract

The potent growth-promoting activity of insulin-like growth factor-II (IGF-II) is highly regulated during development but frequently up-regulated in tumors. Increased expression of the normally monoallelic (paternally expressed) mouse (Igf2) and human (IGF2) genes modify progression of intestinal adenoma in the Apc(Min/+) mouse and correlate with a high relative risk of human colorectal cancer susceptibility, respectively. We examined the functional consequence of Igf2 allelic dosage (null, monoallelic, and biallelic) on intestinal adenoma development in the Apc(Min/+) by breeding with mice with either disruption of Igf2 paternal allele or H19 maternal allele and used these models to evaluate an IGF-II-specific therapeutic intervention. Increased allelic Igf2 expression led to elongation of intestinal crypts, increased adenoma growth independent of systemic growth, and increased adenoma nuclear beta-catenin staining. By introducing a transgene expressing a soluble form of the full-length IGF-II/mannose 6-phosphate receptor (sIGF2R) in the intestine, which acts as a specific inhibitor of IGF-II ligand bioavailability (ligand trap), we show rescue of the Igf2-dependent intestinal and adenoma phenotype. This evidence shows the functional potency of allelic dosage of an epigenetically regulated gene in cancer and supports the application of an IGF-II ligand-specific therapeutic intervention in colorectal cancer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources