Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991:12-13 Pt 1:287-96.
doi: 10.3109/10715769109145797.

Probing the structural basis for enzyme-substrate recognition in Cu,Zn superoxide dismutase

Affiliations
Review

Probing the structural basis for enzyme-substrate recognition in Cu,Zn superoxide dismutase

C L Fisher et al. Free Radic Res Commun. 1991.

Abstract

A full understanding of enzyme-substrate interactions requires a detailed knowledge of their structural basis at atomic resolution. Crystallographic and biochemical data have been analyzed with coupled computational and computer graphic approaches to characterize the molecular basis for recognition of the superoxide anion substrate by Cu,Zn superoxide dismutase (SOD). Detailed analysis of the bovine SOD structure aligned with SOD sequences from 15 species provides new results concerning the significance and molecular basis for sequence conservation. Specific roles have been assigned for all 23 invariant residues and additional residues exhibiting functional equivalence. Sequence invariance is dominated by 15 residues that form the active site stereochemistry, supporting a primary biological function of superoxide dismutation. Using data from crystallographic structures and site-directed mutants, we are testing the role of individual residues in the active site channel, including (in human SOD) Glu 132, Glu 133, Lys 136, Thr 137, and Arg 143. Electrostatic calculations incorporating molecular flexibility suggest that the region of positive electrostatic potential in and over the active site channel above the Cu ion sweeps through space during molecular motion to enhance the facilitated diffusion responsible for the enzyme's rapid catalytic rate.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms