Human tissue-engineered blood vessels for adult arterial revascularization
- PMID: 16491087
- PMCID: PMC1513140
- DOI: 10.1038/nm1364
Human tissue-engineered blood vessels for adult arterial revascularization
Abstract
There is a crucial need for alternatives to native vein or artery for vascular surgery. The clinical efficacy of synthetic, allogeneic or xenogeneic vessels has been limited by thrombosis, rejection, chronic inflammation and poor mechanical properties. Using adult human fibroblasts extracted from skin biopsies harvested from individuals with advanced cardiovascular disease, we constructed tissue-engineered blood vessels (TEBVs) that serve as arterial bypass grafts in long-term animal models. These TEBVs have mechanical properties similar to human blood vessels, without relying upon synthetic or exogenous scaffolding. The TEBVs are antithrombogenic and mechanically stable for 8 months in vivo. Histological analysis showed complete tissue integration and formation of vasa vasorum. The endothelium was confluent and positive for von Willebrand factor. A smooth muscle-specific alpha-actin-positive cell population developed within the TEBV, suggesting regeneration of a vascular media. Electron microscopy showed an endothelial basement membrane, elastogenesis and a complex collagen network. These results indicate that a completely biological and clinically relevant TEBV can be assembled exclusively from an individual's own cells.
Figures
References
-
- Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397–400. - PubMed
-
- Niklason LE, et al. Functional arteries grown in vitro. Science. 1999;284:489–93. - PubMed
-
- Chue WL, et al. Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. J Vasc Surg. 2004;39:859–867. - PubMed
-
- Kakisis JD, Liapis CD, Breuer C, Sumpio BE. Artificial blood vessel: the Holy Grail of peripheral vascular surgery. J Vasc Surg. 2005;41:349–54. - PubMed
-
- L’Heureux N, Germain L, Labbe R, Auger FA. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. Journal of Vascular Surgery. 1993;17:499–509. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
