Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;8(1):65-71.
doi: 10.1007/s10544-006-6384-8.

Elucidating in vitro cell-cell interaction using a microfluidic coculture system

Affiliations

Elucidating in vitro cell-cell interaction using a microfluidic coculture system

Cheng-Wey Wei et al. Biomed Microdevices. 2006 Mar.

Abstract

This work presents a novel microfluidic coculture system that improves the accuracy of evaluating the interaction between cocultured cell types. A microfluidic coculture chip, fabricated by CO(2) laser direct-writing on polymethyl methacrylate (PMMA), was designed to separate two cell types using a microchannel, while permitting transfer of cellular media. The system has two up-stream wells and five down-stream wells. As an example, released inflammatory cytokines (e.g., interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha)), activated in up-stream macrophages, flow through a microfluidic mixing system, generating linear concentration gradients in down-stream wells and inducing down-stream osteoblasts to release prostaglandin E2 (PGE2), a well-known bone resorption marker. Osteoblast viability was assessed by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. This novel coculture system can be applied to evaluate cell-cell interaction while physically separating interacting cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources