Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Feb 27;45(10):1520-43.
doi: 10.1002/anie.200503132.

Asymmetric catalysis by chiral hydrogen-bond donors

Affiliations
Review

Asymmetric catalysis by chiral hydrogen-bond donors

Mark S Taylor et al. Angew Chem Int Ed Engl. .

Abstract

Hydrogen bonding is responsible for the structure of much of the world around us. The unusual and complex properties of bulk water, the ability of proteins to fold into stable three-dimensional structures, the fidelity of DNA base pairing, and the binding of ligands to receptors are among the manifestations of this ubiquitous noncovalent interaction. In addition to its primacy as a structural determinant, hydrogen bonding plays a crucial functional role in catalysis. Hydrogen bonding to an electrophile serves to decrease the electron density of this species, activating it toward nucleophilic attack. This principle is employed frequently by Nature's catalysts, enzymes, for the acceleration of a wide range of chemical processes. Recently, organic chemists have begun to appreciate the tremendous potential offered by hydrogen bonding as a mechanism for electrophile activation in small-molecule, synthetic catalyst systems. In particular, chiral hydrogen-bond donors have emerged as a broadly applicable class of catalysts for enantioselective synthesis. This review documents these advances, emphasizing the structural and mechanistic features that contribute to high enantioselectivity in hydrogen-bond-mediated catalytic processes.

PubMed Disclaimer

LinkOut - more resources