Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb 23;439(7079):953-6.
doi: 10.1038/nature04550.

Quantum supercurrent transistors in carbon nanotubes

Affiliations

Quantum supercurrent transistors in carbon nanotubes

Pablo Jarillo-Herrero et al. Nature. .

Abstract

Electronic transport through nanostructures is greatly affected by the presence of superconducting leads. If the interface between the nanostructure and the superconductors is sufficiently transparent, a dissipationless current (supercurrent) can flow through the device owing to the Josephson effect. A Josephson coupling, as measured by the zero-resistance supercurrent, has been obtained using tunnel barriers, superconducting constrictions, normal metals and semiconductors. The coupling mechanisms vary from tunnelling to Andreev reflection. The latter process has hitherto been observed only in normal-type systems with a continuous density of electronic states. Here we investigate a supercurrent flowing through a discrete density of states-that is, the quantized single particle energy states of a quantum dot, or 'artificial atom', placed between superconducting electrodes. For this purpose, we exploit the quantum properties of finite-sized carbon nanotubes. By means of a gate electrode, successive discrete energy states are tuned on- and off-resonance with the Fermi energy in the superconducting leads, resulting in a periodic modulation of the critical current and a non-trivial correlation between the conductance in the normal state and the supercurrent. We find, in good agreement with existing theory, that the product of the critical current and the normal state resistance becomes an oscillating function, in contrast to being constant as in previously explored regimes.

PubMed Disclaimer

LinkOut - more resources