Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul 30;30(30):7438-44.
doi: 10.1021/bi00244a010.

Limits of diffusion in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta

Affiliations

Limits of diffusion in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta

S R Caldwell et al. Biochemistry. .

Abstract

The catalytic mechanism for the enzymatic hydrolysis of a series of paraoxon analogues by the phosphotriesterase from Pseudomonas diminuta has been determined. The Brønsted plots relating the pKa of the leaving group to the observed kinetic parameters, Vmax and V/Km, are both nonlinear. This observation is consistent with a change in the rate-limiting step from chemical to physical events as the pKa of the leaving group is decreased. This conclusion is confirmed by the effects of solvent viscosity on Vmax and V/Km for the same series of analogues. The data were fitted to the scheme E k1A in equilibrium k2 EA k3----EP k7----E'P k9----E + products where EA is the enzyme-substrate complex, EP is the enzyme-product complex, E'P is the enzyme-product complex after a viscosity-independent unimolecular reaction, and the values for k1, k2, k7, and k9 are 4.1 X 10(7) M-1 s-1, 2550 s-1, 3370 s-1, and 5940 s-1, respectively. The magnitude of the chemical step, represented by k3, is dependent on the pKa of the leaving group phenol as predicted by the Brønsted equation (log k3 = beta pKa + C) where beta = -1.8 and the constant (C) = 17.7. The magnitude of beta indicates that the transition state for substrate hydrolysis is very product-like.

PubMed Disclaimer

Publication types

LinkOut - more resources