Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006;55(6):667-674.
doi: 10.33549/physiolres.930841.

Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis

Affiliations
Free article
Comparative Study

Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis

M Vokurka et al. Physiol Res. 2006.
Free article

Abstract

Hepcidin, a key regulator of iron metabolism, decreases intestinal absorption of iron and its release from macrophages. Iron, anemia, hypoxia, and inflammation were reported to influence hepcidin expression. To investigate regulation of the expression of hepcidin and other iron-related genes, we manipulated erythropoietic activity in mice. Erythropoiesis was inhibited by irradiation or posttransfusion polycythemia and stimulated by phenylhydrazine administration and erythropoietin. Gene expression of hepcidin and other iron-related genes (hemojuvelin, DMT1, ferroportin, transferrin receptors, ferritin) in the liver was measured by the real-time polymerase chain reaction. Hepcidin expression increased despite severe anemia when hematopoiesis was inhibited by irradiation. Suppression of erythropoiesis by posttransfusion polycythemia or irradiation also increased hepcidin mRNA levels. Compensated hemolysis induced by repeated phenylhydrazine administration did not change hepcidin expression. The decrease caused by exogenous erythropoeitin was blocked by postirradiation bone marrow suppression. The hemolysis and anemia decrease hepcidin expression only when erythropoiesis is functional; on the other hand, if erythropoiesis is blocked, even severe anemia does not lead to a decrease of hepcidin expression, which is indeed increased. We propose that hepcidin is exclusively sensitive to iron utilization for erythropoiesis and hepatocyte iron balance, and these changes are not sensed by other genes involved in the control of iron metabolism in the liver.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources