Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 May 15;173(10):1139-44.
doi: 10.1164/rccm.200508-1330OC. Epub 2006 Feb 23.

Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers

Affiliations
Comparative Study

Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers

André M Cantin et al. Am J Respir Crit Care Med. .

Abstract

Rationale: Cigarette smoke extract inhibits chloride secretion in human bronchial epithelial cells. Oxidants decrease gene expression, protein expression, and function of the cystic fibrosis transmembrane conductance regulator (CFTR).

Objectives: Because cigarette smoke is a rich source of oxidants, we verified the hypothesis that CFTR may be suppressed by exposure to cigarette smoke in vitro and in vivo.

Methods: The effects of cigarette smoke exposure on Calu-3 and T84 cell CFTR expression and function were observed. Also studied were the nasal potential differences (PDs) in 26 men (9 smokers, 17 nonsmokers) who had no detectable CFTR gene mutations as determined during investigations for infertility. CFTR expression and function were determined by Northern blotting, Western blotting, and cAMP-dependent 125I efflux assays. Extensive CFTR genotyping was performed in each subject. Nasal PD measurements were made at baseline and during amiloride, chloride-free buffer, and isoproterenol perfusions.

Main results: Cigarette smoke decreased CFTR expression and function in Calu-3 and T84 cell lines. Furthermore, the nasal PDs of cigarette smokers showed a pattern typical of CFTR deficiency with a blunted response to chloride-free buffer and isoproterenol compared with nonsmokers (-9.6 +/- 4.0 vs. -22.3 +/- 10.1 mV; p < 0.001).

Conclusions: We conclude that cigarette smoke decreases the expression of CFTR gene, protein, and function in vitro and that acquired CFTR deficiency occurs in the nasal respiratory epithelium of cigarette smokers. We suggest that acquired CFTR deficiency may contribute to the physiopathology of cigarette-induced diseases such as chronic bronchitis.

PubMed Disclaimer

Publication types

MeSH terms