Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul 25;266(21):14031-8.

Amplification of snap-back DNA synthesis reactions by the uvsX recombinase of bacteriophage T4

Affiliations
  • PMID: 1649833
Free article

Amplification of snap-back DNA synthesis reactions by the uvsX recombinase of bacteriophage T4

S W Morrical et al. J Biol Chem. .
Free article

Abstract

The uvsX protein of bacteriophage T4 is a recA-type recombinase. This protein has previously been shown to help initiate DNA replication on a double-stranded DNA template by catalyzing synapsis between the template and a homologous DNA single strand that serves as primer. Here, we demonstrate that this replication-initiating activity of the uvsX protein greatly amplifies the snap-back (hairpin-primed) DNA synthesis that is catalyzed by the T4 DNA polymerase holoenzyme on linear, single-stranded DNA templates. Amplification requires the presence of uvsX protein, the DNA polymerase holoenzyme, T4 gene 32 protein, and a T4 DNA helicase, in a reaction that is modulated by the T4 uvsY protein (an accessory protein to the uvsX recombinase). The reaction products consist primarily of large networks of double-stranded and single-stranded DNA. With alkali or heat treatment, these networks resolve into dimer-length single-stranded DNA chains that renature instantaneously to reform a monomer-length double helix. A simple model can explain this uvsX protein-dependent amplification of snap-back DNA synthesis; the mechanism proposed makes several predictions that are confirmed by our experiments.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources