The cell cycle: a critical therapeutic target to prevent vascular proliferative disease
- PMID: 16498512
- PMCID: PMC2780832
- DOI: 10.1016/s0828-282x(06)70986-2
The cell cycle: a critical therapeutic target to prevent vascular proliferative disease
Abstract
Percutaneous coronary intervention is the preferred revascularization approach for most patients with coronary artery disease. However, this strategy is limited by renarrowing of the vessel by neointimal hyperplasia within the stent lumen (in-stent restenosis). Vascular smooth muscle cell proliferation is a major component in this healing process. This process is mediated by multiple cytokines and growth factors, which share a common pathway in inducing cell proliferation: the cell cycle. The cell cycle is highly regulated by numerous mechanisms ensuring orderly and coordinated cell division. The present review discusses current concepts related to regulation of the cell cycle and new therapeutic options that target aspects of the cell cycle.
L’intervention coronaire percutanée est la démarche de revascularisation de choix pour la plupart des patients atteints d’une coronaropathie. Cependant, cette stratégie est limitée par un nouveau rétrécissement du vaisseau imputable à une hyperplasie néo-intimale dans la lumière de l’endoprothèse (une resténose dans l’endoprothèse). La prolifération des cellules vasculaires des muscles lisses est un élément important de ce processus de guérison. Ce processus est médié par de multiples cytokines et facteurs de croissance, qui partagent une voie commune dans l’induction de la prolifération cellulaire : le cycle cellulaire. Le cycle cellulaire est hautement régularisé par de nombreux mécanismes qui assurent une division cellulaire ordonnée et coordonnée. La présente analyse porte sur les concepts courants reliés à la régulation du cycle cellulaire et sur de nouvelles options thérapeutiques qui ciblent des aspects du cycle cellulaire.
Figures








Similar articles
-
Decoy oligodeoxynucleotide against activator protein-1 reduces neointimal proliferation after coronary angioplasty in hypercholesterolemic minipigs.J Am Coll Cardiol. 2002 Feb 20;39(4):732-8. doi: 10.1016/s0735-1097(01)01797-1. J Am Coll Cardiol. 2002. PMID: 11849876
-
Life and Death Partners in Post-PCI Restenosis: Apoptosis, Autophagy, and The Cross-talk Between Them.Curr Drug Targets. 2018;19(9):1003-1008. doi: 10.2174/1389450117666160625072521. Curr Drug Targets. 2018. PMID: 27358059 Review.
-
Pathophysiology of coronary artery restenosis.Rev Cardiovasc Med. 2002;3 Suppl 5:S4-9. Rev Cardiovasc Med. 2002. PMID: 12478229 Review.
-
A prospective randomised study using optical coherence tomography to assess endothelial coverage and neointimal proliferation at 6-months after implantation of a coronary everolimus-eluting stent compared with a bare metal stent postdilated with a paclitaxel-eluting balloon (OCTOPUS Trial): rationale, design and methods.EuroIntervention. 2011 May;7 Suppl K:K93-9. doi: 10.4244/EIJV7SKA16. EuroIntervention. 2011. PMID: 22027737 Clinical Trial.
-
Temporal course of neointimal formation after drug-eluting stent placement: is our understanding of restenosis changing?JACC Cardiovasc Interv. 2009 Apr;2(4):300-2. doi: 10.1016/j.jcin.2009.01.004. JACC Cardiovasc Interv. 2009. PMID: 19463440 No abstract available.
Cited by
-
Valsartan inhibits angiotensin II-induced proliferation of vascular smooth muscle cells via regulating the expression of mitofusin 2.J Huazhong Univ Sci Technolog Med Sci. 2012 Feb;32(1):31-35. doi: 10.1007/s11596-012-0005-y. Epub 2012 Jan 27. J Huazhong Univ Sci Technolog Med Sci. 2012. PMID: 22282241
-
Beta-estradiol attenuates hypoxic pulmonary hypertension by stabilizing the expression of p27kip1 in rats.Respir Res. 2010 Dec 24;11(1):182. doi: 10.1186/1465-9921-11-182. Respir Res. 2010. PMID: 21182801 Free PMC article.
-
Arterial territory-specific phosphorylated retinoblastoma protein species and CDK2 promote differences in the vascular smooth muscle cell response to mitogens.Cell Cycle. 2014;13(2):315-23. doi: 10.4161/cc.27056. Epub 2013 Nov 12. Cell Cycle. 2014. PMID: 24240190 Free PMC article.
-
The COP9 signalosome and vascular function: intriguing possibilities?Am J Cardiovasc Dis. 2015 Mar 20;5(1):33-52. eCollection 2015. Am J Cardiovasc Dis. 2015. PMID: 26064791 Free PMC article. Review.
-
Shared genetic architecture between neuroticism, coronary artery disease and cardiovascular risk factors.Transl Psychiatry. 2021 Jun 17;11(1):368. doi: 10.1038/s41398-021-01466-9. Transl Psychiatry. 2021. PMID: 34226488 Free PMC article.
References
-
- Tunstall-Pedoe H, Kuulasmaa K, Mahonen M, Tolonen H, Ruokokoski E, Amouyel P. Contribution of trends in survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA project populations. Monitoring trends and determinants in cardiovascular disease. Lancet. 1999;353:1547–57. - PubMed
-
- Mintz GS, Popma JJ, Pichard AD, et al. Arterial remodeling after coronary angioplasty: A serial intravascular ultrasound study. Circulation. 1996;94:35–43. - PubMed
-
- Hoffmann R, Mintz GS, Dussaillant GR, et al. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation. 1996;94:1247–54. - PubMed
-
- Wilensky RL, March KL, Gradus-Pizlo I, Sandusky G, Fineberg N, Hathaway DR. Vascular injury, repair, and restenosis after percutaneous transluminal angioplasty in the atherosclerotic rabbit. Circulation. 1995;92:2995–3005. - PubMed
-
- Wong A, Chan C. Drug-eluting stents: The end of restenosis? Ann Acad Med Singapore. 2004;33:423–31. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources