Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Apr;117(1):52-67.
doi: 10.1016/j.virusres.2006.01.007. Epub 2006 Feb 28.

Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life

Affiliations
Review

Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life

David Prangishvili et al. Virus Res. 2006 Apr.

Abstract

In terms of virion morphology, the known viruses of archaea fall into two distinct classes: viruses of mesophilic and moderately thermophilic Eueryarchaeota closely resemble head-and-tail bacteriophages whereas viruses of hyperthermophilic Crenarchaeota show a variety of unique morphotypes. In accord with this distinction, the sequenced genomes of euryarchaeal viruses encode many proteins homologous to bacteriophage capsid proteins. In contrast, initial analysis of the crenarchaeal viral genomes revealed no relationships with bacteriophages and, generally, very few proteins with detectable homologs. Here we describe a re-analysis of the proteins encoded by archaeal viruses, with an emphasis on comparative genomics of the unique viruses of Crenarchaeota. Detailed examination of conserved domains and motifs uncovered a significant number of previously unnoticed homologous relationships among the proteins of crenarchaeal viruses and between viral proteins and those from cellular life forms and allowed functional predictions for some of these conserved genes. A small pool of genes is shared by overlapping subsets of crenarchaeal viruses, in a general analogy with the metagenome structure of bacteriophages. The proteins encoded by the genes belonging to this pool include predicted transcription regulators, ATPases implicated in viral DNA replication and packaging, enzymes of DNA precursor metabolism, RNA modification enzymes, and glycosylases. In addition, each of the crenarchaeal viruses encodes several proteins with prokaryotic but not viral homologs, some of which, predictably, seem to have been scavenged from the crenarchaeal hosts, but others might have been acquired from bacteria. We conclude that crenarchaeal viruses are, in general, evolutionarily unrelated to other known viruses and, probably, evolved via independent accretion of genes derived from the hosts and, through more complex routes of horizontal gene transfer, from other prokaryotes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources