Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;139(3):1069-81.
doi: 10.1016/j.neuroscience.2006.01.007. Epub 2006 Feb 28.

Ecstasy-induced cell death in cortical neuronal cultures is serotonin 2A-receptor-dependent and potentiated under hyperthermia

Affiliations

Ecstasy-induced cell death in cortical neuronal cultures is serotonin 2A-receptor-dependent and potentiated under hyperthermia

J P Capela et al. Neuroscience. 2006.

Abstract

Studies on 3,4-methylenedioxymethamphetamine ("ecstasy")-induced neurotoxicity mainly focus on damage of serotonergic terminals. Less attention has been given to neuronal cell death produced by 3,4-methylenedioxymethamphetamine and other amphetamines in areas including the cortex, striatum and thalamus. In the present study we investigated 3,4-methylenedioxymethamphetamine-induced neurotoxicity in neuronal serum free cultures from rat cortex. Since 3,4-methylenedioxymethamphetamine intake induces hyperthermia in both animals and humans, the experiments were performed under normal (36.5 degrees C) and hyperthermic conditions (40 degrees C). Our findings showed a dose-, time- and temperature-dependent apoptotic cell death induced by 3,4-methylenedioxymethamphetamine in cortical neurons. 3,4-Methylenedioxymethamphetamine-induced damage was potentiated under hyperthermia. The neurotoxicity was reduced by the serotonin 2A-receptor antagonists, ketanserin and (2R,4R)-5-[2-[2-[2-(3-methoxyphenyl)ethyl]phenoxy]ethyl]-1-methyl-3-pyrrolidinol hydrochloride, in both normothermic and hyperthermic conditions. (+/-)-2,5-Dimethoxy-4-iodoamphetamine hydrochloride, a model agonist for the serotonin 2A-receptor, also induced a dose- and time-dependent apoptotic cell death. Again, protection was provided by ketanserin and (2R,4R)-5-[2-[2-[2-(3-methoxyphenyl)ethyl]phenoxy]ethyl]-1-methyl-3-pyrrolidinol hydrochloride against (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride-induced neurotoxicity, thereby indicating that the 3,4-methylenedioxymethamphetamine stimulation of the serotonin 2A-receptor leads to neurotoxicity. This study provides for the first time evidence that direct 3,4-methylenedioxymethamphetamine serotonin 2A-receptor stimulation leads to neuronal cortical death. alpha-Phenyl-N-tert-butyl nitrone a free radical scavenger and the nitric oxide synthase inhibitor Nomega-nitro-L-arginine as well as the NMDA-receptor antagonist MK-801 provided protection under normothermia and hyperthermia, thereby suggesting the participation of free radicals in 3,4-methylenedioxymethamphetamine-induced cell death. Since 3,4-methylenedioxymethamphetamine serotonin 2A-receptor agonistic properties lead to neuronal death, clinically available atypical antipsychotic drugs with serotonin 2A-antagonistic properties could be a valuable therapeutic tool against 3,4-methylenedioxymethamphetamine-induced neurodegeneration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources