Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr;47(4):692-8.
doi: 10.1161/01.HYP.0000203161.02046.8d. Epub 2006 Feb 27.

NADPH oxidase in the renal medulla causes oxidative stress and contributes to salt-sensitive hypertension in Dahl S rats

Affiliations

NADPH oxidase in the renal medulla causes oxidative stress and contributes to salt-sensitive hypertension in Dahl S rats

Norman E Taylor et al. Hypertension. 2006 Apr.

Abstract

Dahl salt-sensitive (SS) rats exhibit increased renal medullary oxidative stress and blood pressure salt-sensitivity compared with consomic, salt-resistant SS-13BN rats, despite highly similar genetic backgrounds. The present study examined potential sources of renal medullary superoxide in prehypertensive SS rats fed a 0.4% NaCl diet by assessing activity and protein levels of superoxide producing and scavenging enzymes. Superoxide production was nearly doubled in SS rats compared with SS-13BN rats as determined by urinary 8-isoprostane excretion and renal medullary oxy-ethidium microdialysate levels. Medullary superoxide production in tissue homogenates was greater in SS rats, and the NADPH oxidase inhibitor diphenylene iodonium preferentially reduced SS levels to those found in SS-13BN rats. Dinitrophenol, a mitochondrial uncoupler, eliminated the remaining superoxide production in both strains, whereas inhibition of xanthine oxidase, NO synthase, and cycloxygenase had no effect. L-arginine, NO synthase, superoxide dismutase, catalase, and glutathione peroxidase activities between SS and SS-13BN rats did not differ. Chronic blood pressure responses to a 4% NaCl diet were then determined in the presence or absence of the NADPH oxidase inhibitor apocynin (3.5 microg/kg per minute), chronically delivered directly into the renal medulla. Apocynin infusion reduced renal medullary interstitial superoxide from 1059+/-130 to 422+/-80 (oxyethidium fluorescence units) and mean arterial pressure from 175+/-4 to 157+/-6 mm Hg in SS rats, whereas no effects on either were observed in the SS-13(BN). We conclude that excess renal medullary superoxide production in SS rats contributes to salt-induced hypertension, and NADPH oxidase is the major source of the excess superoxide.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources