Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Feb;6(1):51-5.
doi: 10.1097/01.all.0000200505.54425.47.

The importance of the airway microvasculature in asthma

Affiliations
Review

The importance of the airway microvasculature in asthma

John W Wilson et al. Curr Opin Allergy Clin Immunol. 2006 Feb.

Abstract

Purpose of review: The microvasculature in asthma has been known to contribute to airway-wall thickening and oedema from early post-mortem series. Current concepts of airway inflammation in asthma highlight the importance of the role of the Th2 lymphocyte in the atopic response to aeroallergens, the importance of mast-cell mediators in airway remodelling, potential actions of the vascular response in determining airway thickness and mechanisms of angiogenesis involving endogenous as well as homing progenitor cells with angioblastic potential.

Recent findings: The development of animal models of asthmatic airway inflammation and remodelling have given new insight into mechanisms of angiogenesis in asthma. The central role of vascular endothelial growth factor in angiogenesis, vessel leakage and vascular homeostasis is now recognized. A more recent finding is the influence of this factor in enhancing the Th2 response in airway inflammation. The ability of bone marrow-derived angioblasts to migrate to sites of inflammation and contribute to angiogenesis indicates a pivotal role of stem cells in this process.

Summary: These findings now provide logical links between the inflammatory response, stem-cell mobilization, angiogenesis and airflow obstruction in the remodelled airway of asthma. Future studies examining airway-wall thickness will be able to account for the contribution of the vasculature and airway-wall oedema. Therapies aimed at vascular mechanisms may be useful adjuncts to current treatments and the recognition of stem cells as key players in airway remodelling may provide strategies to reduce fixed airflow obstruction in severe disease.

PubMed Disclaimer