Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar 9;110(9):4459-64.
doi: 10.1021/jp054880l.

On the complexation of proteins and polyelectrolytes

Affiliations

On the complexation of proteins and polyelectrolytes

Fernando Luís B da Silva et al. J Phys Chem B. .

Abstract

Both natural and synthetic polyelectrolytes form strong complexes with a variety of proteins. One peculiar phenomenon is that association can take place even when the protein and the polyelectrolyte carry the same charge. This has been interpreted as if the ion-dipole interaction can overcome the repulsive ion-ion interaction. On the basis of Monte Carlo simulations and perturbation theory, we propose a different explanation for the association, namely, charge regulation. We have investigated three different protein-polymer complexes and found that the induced ionization of amino acid residues due to the polyelectrolyte leads to a surprisingly strong attractive interaction between the protein and the polymer. The extra attraction from this charge-induced charge interaction can be several kT and is for the three cases studied here, lysozyme, alpha-lactalbumin, and beta-lactoglobulin, of the same magnitude or stronger than the ion-dipole interaction. The magnitude of the induced charge is governed by a response function, the protein charge capacitance Z2-Z2. This fluctuation term can easily be calculated in a simulation or measured in a titration experiment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources