Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb 28;21(1):52-62.

Effects of ginsenosides and their metabolites on voltage-dependent Ca(2+) channel subtypes

Affiliations
  • PMID: 16511347
Free article

Effects of ginsenosides and their metabolites on voltage-dependent Ca(2+) channel subtypes

Jun-Ho Lee et al. Mol Cells. .
Free article

Abstract

In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent Ca(2+) channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned Ca(2+) channel subtypes such as alpha(1C) (L)-, alpha(1B) (N)-, alpha(1A) (P/Q)-, a1E (R)- and a1G (T) have not been identified. Here, we used the two-microelectrode volt-age clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on Ba(2+) currents (IBa) in Xenopus oocytes expressing five different Ca(2+) channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the a1G-type. Of the various ginsenosides, Rb(1), Rc, Re, Rf, Rg(1), Rg(3), and Rh(2), ginsenoside Rg(3) also inhibited all five channel subtypes and ginsenoside Rh(2) had most effect on the a1C- and a1E-type Ca(2+) channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the a(1G)-type of Ca(2+) channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. Rg(3), Rh(2), and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the alpha(1B)- and alpha(1A)-types. These results reveal that Rg(3), Rh(2) and CK are the major inhibitors of Ca(2+) channels in Panax ginseng, and that they show some Ca(2+) channel selectivity.

PubMed Disclaimer

Publication types

LinkOut - more resources