Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Mar;116(3):607-14.
doi: 10.1172/JCI27883.

Liver X receptors as integrators of metabolic and inflammatory signaling

Affiliations
Review

Liver X receptors as integrators of metabolic and inflammatory signaling

Noam Zelcer et al. J Clin Invest. 2006 Mar.

Abstract

The liver X receptors (LXRs) are nuclear receptors that play central roles in the transcriptional control of lipid metabolism. LXRs function as nuclear cholesterol sensors that are activated in response to elevated intracellular cholesterol levels in multiple cell types. Once activated, LXRs induce the expression of an array of genes involved in cholesterol absorption, efflux, transport, and excretion. In addition to their function in lipid metabolism, LXRs have also been found to modulate immune and inflammatory responses in macrophages. Synthetic LXR agonists promote cholesterol efflux and inhibit inflammation in vivo and inhibit the development of atherosclerosis in animal models. The ability of LXRs to integrate metabolic and inflammatory signaling makes them particularly attractive targets for intervention in human metabolic disease.

PubMed Disclaimer

Figures

Figure 1
Figure 1
LXRs are cholesterol-sensing transcription factors. Within the nucleus, LXR/RXR heterodimers are bound to LXREs in the promoters of target genes and in complex with corepressors (e.g., SMRT, N-CoR). In response to the binding of oxysterol ligands, the corepressor complexes are exchanged for coactivator complexes, and target gene expression is induced.
Figure 2
Figure 2
Role of LXRs in reverse cholesterol transport from macrophages. The uptake of modified lipoproteins by macrophages results in increased LXR transcriptional activity and efflux of cholesterol to lipid-poor apoA-I by ABCA1 and to HDL by ABCG1. In humans, but not mice, induction of CETP expression transfers lipid from HDL to LDL. Once HDL/LDL is taken up by the liver, LXR promotes net cholesterol excretion. In rodents, but not humans, LXR induces expression of Cyp7a1, which initiates the conversion of cholesterol into bile acids. LXRs also induce cholesterol secretion into bile through the transporters ABCG5 and ABCG8. In the intestine, apical ABCG5 and ABCG8 also act to limit dietary cholesterol uptake.
Figure 3
Figure 3
Integration of lipid metabolic and inflammatory signaling in macrophages by LXRs. Recognition of cytokines, bacterial components, or intact pathogens by their corresponding receptors initiates expression of proinflammatory genes (e.g., iNOS). Activation of the TLR3/4 receptors by these signals blocks LXR-dependent gene transcription and cholesterol efflux from macrophages via an IFN regulatory factor 3–dependent (IRF3-dependent) pathway. On the other hand, ligand activation of LXRs inhibits NF-κB–dependent induction of inflammatory gene expression. Intracellular bacteria induce LXRα expression, possibly through a NOD2-dependent pathway, and promote macrophage survival, through induction of Api6 (also known as AIM and SPα) and other targets.

References

    1. Apfel R, et al. A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol. Cell. Biol. 1994;14:7025–7035. - PMC - PubMed
    1. Willy PJ, et al. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995;9:1033–1045. - PubMed
    1. Lehmann JM, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem. 1997;272:3137–3140. - PubMed
    1. Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu. Rev. Cell Dev. Biol. 2000;16:459–481. - PubMed
    1. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001;294:1866–1870. - PubMed

Publication types