Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;5(3):493-501.
doi: 10.1021/pr0504081.

Infrared multiphoton dissociation and electron capture dissociation of high-mannose type glycopeptides

Affiliations

Infrared multiphoton dissociation and electron capture dissociation of high-mannose type glycopeptides

Julie T Adamson et al. J Proteome Res. 2006 Mar.

Abstract

The combination of electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD) for the structural characterization of high-mannose type glycopeptides is explored in depth for the first time. Contrary to previous applications to other glycan types, our analyses reveal that IRMPD does not necessarily selectively induce glycan cleavage in high-mannose type glycopeptides; rather peptide backbone cleavage can effectively compete with glycosidic cleavage. Poor glycan cleavage with IRMPD is due to a higher gas-phase stability of mannose-linking glycosidic bonds. This reasoning also explains mannose cleavage patterns observed for a xylose type glycopeptide with IRMPD. In addition, extensive peptide backbone cleavage is observed for a >6 kDa glycopeptide with ECD, to our knowledge the largest glycopeptide examined with this technique to date.

PubMed Disclaimer

Publication types

LinkOut - more resources