Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Apr 28;358(2):597-613.
doi: 10.1016/j.jmb.2005.11.073. Epub 2005 Dec 9.

Correlations between scaffold/matrix attachment region (S/MAR) binding activity and DNA duplex destabilization energy

Affiliations
Comparative Study

Correlations between scaffold/matrix attachment region (S/MAR) binding activity and DNA duplex destabilization energy

Jürgen Bode et al. J Mol Biol. .

Abstract

Scaffold or matrix-attachment regions (S/MARs) are thought to be involved in the organization of eukaryotic chromosomes and in the regulation of several DNA functions. Their characteristics are conserved between plants and humans, and a variety of biological activities have been associated with them. The identification of S/MARs within genomic sequences has proved to be unexpectedly difficult, as they do not appear to have consensus sequences or sequence motifs associated with them. We have shown that S/MARs do share a characteristic structural property, they have a markedly high predicted propensity to undergo strand separation when placed under negative superhelical tension. This result agrees with experimental observations, that S/MARs contain base-unpairing regions (BURs). Here, we perform a quantitative evaluation of the association between the ease of stress-induced DNA duplex destabilization (SIDD) and S/MAR binding activity. We first use synthetic oligomers to investigate how the arrangement of localized unpairing elements within a base-unpairing region affects S/MAR binding. The organizational properties found in this way are applied to the investigation of correlations between specific measures of stress-induced duplex destabilization and the binding properties of naturally occurring S/MARs. For this purpose, we analyze S/MAR and non-S/MAR elements that have been derived from the human genome or from the tobacco genome. We find that S/MARs exhibit long regions of extensive destabilization. Moreover, quantitative measures of the SIDD attributes of these fragments calculated under uniform conditions are found to correlate very highly (r2>0.8) with their experimentally measured S/MAR-binding strengths. These results suggest that duplex destabilization may be involved in the mechanisms by which S/MARs function. They suggest also that SIDD properties may be incorporated into an improved computational strategy to search genomic DNA sequences for sites having the necessary attributes to function as S/MARs, and even to estimate their relative binding strengths.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources