Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;69(4):691-8.
doi: 10.1038/sj.ki.5000162.

Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion

Affiliations
Free article

Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion

M Hatch et al. Kidney Int. 2006 Feb.
Free article

Abstract

The primary goal of this study was to test the hypothesis that Oxalobacter colonization alters colonic oxalate transport thereby reducing urinary oxalate excretion. In addition, we examined the effects of intraluminal calcium on Oxalobacter colonization and tested the hypothesis that endogenously derived colonic oxalate could be degraded by lyophilized Oxalobacter enzymes targeted to this segment of the alimentary tract. Oxalate fluxes were measured across short-circuited, in vitro preparations of proximal and distal colon removed from Sprague-Dawley rats and placed in Ussing chambers. For these studies, rats were colonized with Oxalobacter either artificially or naturally, and urinary oxalate, creatinine and calcium excretions were determined. Colonized rats placed on various dietary treatment regimens were used to evaluate the impact of calcium on Oxalobacter colonization and whether exogenous or endogenous oxalate influenced colonization. Hyperoxaluric rats with some degree of renal insufficiency were also used to determine the effects of administering encapsulated Oxalobacter lysate on colonic oxalate transport and urinary oxalate excretion. We conclude that in addition to its intraluminal oxalate-degrading capacity, Oxalobacter interacts physiologically with colonic mucosa by inducing enteric oxalate secretion/excretion leading to reduced urinary excretion. Whether Oxalobacter, or products of Oxalobacter, can therapeutically reduce urinary oxalate excretion and influence stone disease warrants further investigation in long-term studies in various patient populations.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources