Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr 28;358(2):420-9.
doi: 10.1016/j.jmb.2006.02.005. Epub 2006 Feb 20.

Defining the intramembrane binding mechanism of sarcolipin to calcium ATPase using solution NMR spectroscopy

Affiliations

Defining the intramembrane binding mechanism of sarcolipin to calcium ATPase using solution NMR spectroscopy

Jarrod J Buffy et al. J Mol Biol. .

Abstract

Sarcolipin (SLN) is an integral membrane protein that is expressed in both skeletal and cardiac muscle, where it inhibits SERCA (calcium ATPase) by lowering its apparent Ca2+ affinity in a manner similar to that of its homologue phospholamban (PLN). We use solution NMR to map the structural changes occurring within SLN upon interaction with the regulatory target, SERCA, co-reconstituting the two proteins in dodecylphosphocholine (DPC) detergent micelles, a system that preserves the native structure of SLN and the activity of SERCA, with the goal of comparing these interactions with those of the previously studied PLN-SERCA complex. Our analysis of the structural dynamics of SLN in DPC micelles shows this polypeptide to be partitioned into four subdomains: a short unstructured N terminus (residues 1-6), a short dynamic helix (residues 7-14), a more rigid helix (residues 15-26), and an unstructured C terminus (residues 27-31). Upon addition of SERCA, the different domains behave according to their dynamics, molding onto the surface of the enzyme. Remarkably, each domain of SLN behaves in a manner similar to that of the corresponding domains in PLN, supporting the hypothesis that both SLN and PLN bind SERCA in the same groove and with similar mechanisms.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources