Orphan nuclear receptor TR3/Nur77 regulates VEGF-A-induced angiogenesis through its transcriptional activity
- PMID: 16520388
- PMCID: PMC2118245
- DOI: 10.1084/jem.20051523
Orphan nuclear receptor TR3/Nur77 regulates VEGF-A-induced angiogenesis through its transcriptional activity
Abstract
Vascular endothelial growth factor (VEGF)-A has essential roles in vasculogenesis and angiogenesis, but the downstream steps and mechanisms by which human VEGF-A acts are incompletely understood. We report here that human VEGF-A exerts much of its angiogenic activity by up-regulating the expression of TR3 (mouse homologue Nur77), an immediate-early response gene and orphan nuclear receptor transcription factor previously implicated in tumor cell, lymphocyte, and neuronal growth and apoptosis. Overexpression of TR3 in human umbilical vein endothelial cells (HUVECs) resulted in VEGF-A-independent proliferation, survival, and induction of several cell cycle genes, whereas expression of antisense TR3 abrogated the response to VEGF-A in these assays and also inhibited tube formation. Nur77 was highly expressed in several types of VEGF-A-dependent pathological angiogenesis in vivo. Also, using a novel endothelial cell-selective retroviral targeting system, overexpression of Nur77 DNA potently induced angiogenesis in the absence of exogenous VEGF-A, whereas Nur77 antisense strongly inhibited VEGF-A-induced angiogenesis. B16F1 melanoma growth and angiogenesis were greatly inhibited in Nur77-/- mice. Mechanistic studies with TR3/Nur77 mutants revealed that TR3/Nur77 exerted most of its effects on cultured HUVECs and its pro-angiogenic effects in vivo, through its transactivation and DNA binding domains (i.e., through transcriptional activity).
Figures
References
-
- Folkman, J. 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1:27–31. - PubMed
-
- Risau, W. 1997. Mechanisms of angiogenesis. Nature. 386:671–674. - PubMed
-
- Dvorak, H.F., J.A. Nagy, D. Feng, L.F. Brown, and A.M. Dvorak. 1999. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol. 237:97–132. - PubMed
-
- Ferrara, N. 1999. Vascular endothelial growth factor: molecular and biological aspects. Curr. Top. Microbiol. Immunol. 237:1–30. - PubMed
-
- Carmeliet, P., and R.K. Jain. 2000. Angiogenesis in cancer and other diseases. Nature. 407:249–257. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
