Design of a hyperstable protein by rational consideration of unfolded state interactions
- PMID: 16522085
- DOI: 10.1021/ja057874b
Design of a hyperstable protein by rational consideration of unfolded state interactions
Abstract
Stabilization of proteins is a long-sought objective. Targeting the unfolded state interactions of a protein is not a method used for this purpose, although many proteins are known to contain such interactions. The N-terminal domain of ribosomal protein L9 (NTL9) has a lysine residue at position 12, which makes strong non-native interactions in the unfolded state. Substitution of a d-alanine for G34 in NTL9 is known to stabilize the protein by reducing the entropy of the unfolded state. Here we combine these two mutations to design a hyperstable protein. The structure of the variant is the same as that of wild-type as judged by 2D NMR. The variant is hyperstable as judged by denaturation experiments, where complete thermal unfolding of the protein does not occur in native buffer.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
