Backbone conformational constraints in a microcrystalline U-15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy
- PMID: 16522090
- DOI: 10.1021/ja058292x
Backbone conformational constraints in a microcrystalline U-15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy
Abstract
Structural studies of uniformly labeled proteins by magic-angle spinning NMR spectroscopy have rapidly matured in recent years. Site-specific chemical shifts of several proteins have been assigned and structures determined from 2D or 3D data sets containing internuclear distance information. Here we demonstrate the application of a complementary technique for constraining protein backbone geometry using a site-resolved 3D dipolar-shift pulse sequence. The dipolar line shapes report on the relative orientations of 1H-15N[i] to 1H-15N[i+1] dipole vectors, constraining the torsion angles phi[i] and psi[i]. In addition, from the same 3D data set, several 1H-15N[i] to1H-15N[i+2] line shapes are extracted to constrain the torsion angles phi[i], psi[i], phi[i+1], and psi[i+1]. We report results for the majority of sites in the 56-residue beta1 immunoglobulin binding domain of protein G (GB1), using 3D experiments at 600 MHz 1H frequency. Excellent agreement between the SSNMR results and a new 1.14 A crystal structure illustrate the general potential of this technique for high-resolution structural refinement of solid proteins.
Similar articles
-
Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.J Phys Chem B. 2006 Jun 8;110(22):10926-36. doi: 10.1021/jp060507h. J Phys Chem B. 2006. PMID: 16771346
-
Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.J Am Chem Soc. 2005 Sep 7;127(35):12291-305. doi: 10.1021/ja044497e. J Am Chem Soc. 2005. PMID: 16131207
-
Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.J Am Chem Soc. 2005 Aug 31;127(34):11946-7. doi: 10.1021/ja053862e. J Am Chem Soc. 2005. PMID: 16117526
-
Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward.Curr Opin Struct Biol. 2004 Oct;14(5):554-61. doi: 10.1016/j.sbi.2004.09.007. Curr Opin Struct Biol. 2004. PMID: 15465315 Review.
-
Solid-state nuclear magnetic resonance structural studies of proteins using paramagnetic probes.Solid State Nucl Magn Reson. 2012 May-Jun;43-44:1-13. doi: 10.1016/j.ssnmr.2012.02.007. Epub 2012 Mar 9. Solid State Nucl Magn Reson. 2012. PMID: 22464402 Review.
Cited by
-
Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy.Nat Chem. 2012 Mar 18;4(5):410-7. doi: 10.1038/nchem.1299. Nat Chem. 2012. PMID: 22522262 Free PMC article.
-
Spinning-rate encoded chemical shift correlations from rotational resonance solid-state NMR experiments.J Magn Reson. 2013 May;230:117-24. doi: 10.1016/j.jmr.2013.02.004. Epub 2013 Feb 14. J Magn Reson. 2013. PMID: 23475055 Free PMC article.
-
An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins.Protein Sci. 2007 Jul;16(7):1429-38. doi: 10.1110/ps.072845607. Protein Sci. 2007. PMID: 17586775 Free PMC article.
-
Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids.J Magn Reson. 2013 Jul;232:18-30. doi: 10.1016/j.jmr.2013.04.009. Epub 2013 Apr 28. J Magn Reson. 2013. PMID: 23685715 Free PMC article.
-
(15)N-(15)N proton assisted recoupling in magic angle spinning NMR.J Am Chem Soc. 2009 Apr 29;131(16):5769-76. doi: 10.1021/ja806578y. J Am Chem Soc. 2009. PMID: 19334788 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources