Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD)
- PMID: 16523049
- DOI: 10.1097/01.md.0000200165.90373.9a
Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD)
Abstract
The autosomal recessive form of polycystic kidney disease (ARPKD) is generally considered an infantile disorder with the typical presentation of greatly enlarged echogenic kidneys detected in utero or within the neonatal period, often resulting in neonatal demise. However, there is an increasing realization that survivors often thrive into adulthood with complications of the ductal plate malformation, manifesting as congenital hepatic fibrosis and Caroli disease, becoming prominent. Previous natural history studies have concentrated almost exclusively on the infantile presenting group. However, developments in understanding the genetic basis of ARPKD, through identification of the disease gene, PKHD1, have allowed exploration of the etiology in patients with ARPKD-like disease or congenital hepatic fibrosis presenting later in childhood or as adults. In the current study we retrospectively reviewed the clinical records, and where possible performed PKHD1 mutation screening, in patients diagnosed with ARPKD or congenital hepatic fibrosis at the Mayo Clinic, Rochester, MN, from 1961 to 2004. Of a total of 133 cases reviewed, 65 were considered to meet the diagnostic criteria with an average duration of follow-up of 8.6 +/- 6.4 years. Fifty-five cases had ARPKD and 10 had isolated congenital hepatic fibrosis with no or minimal renal involvement. The patients were analyzed as 3 groups categorized by the age at diagnosis; <1 years (n = 22), 1-20 years (n = 23), and >20 years (n = 20). The presenting feature in the neonates was typically associated with renal enlargement, but in the older groups, more often involved manifestations of liver disease, including hepatosplenomegaly, hypersplenism, variceal bleeding, and cholangitis. During follow-up, 22 patients had renal insufficiency and 8 developed end-stage renal disease (ESRD), most from the neonatal group. Liver disease was evident on follow-up in all diagnostic groups but particularly prevalent in those diagnosed later in life. A total of 12 patients died, 6 in the neonatal period, but 86% of patients were alive at 40 years of age. The likelihood of being alive without ESRD differed significantly between the diagnostic groups with 36%, 80%, and 88% survival in the 3 diagnostic groups, respectively, 20 years after the diagnosis. Considerable evidence of intrafamilial phenotype variability was observed. Mutation analysis was performed in 31 families and at least 1 mutation was detected in 25 (81%), with 76% of mutant alleles detected in those cases. Consistent with the relatively mild disease manifestations in this population, the majority of changes were missense (79%) and no case had 2 truncating changes. Mutations were detected in all diagnostic groups, indicating that congenital hepatic fibrosis with minimal kidney involvement can result from PKHD1 mutation. The finding of 6 cases with no detected mutations may represent missed mutations or possible evidence of genetic heterogeneity. The current study indicates a broadened spectrum for the ARPKD phenotype and that later presenting cases with predominant liver disease should be considered part of ARPKD.
Comment in
-
Renal MODY-fier genes.Am J Physiol Renal Physiol. 2014 Sep 15;307(6):F656-7. doi: 10.1152/ajprenal.00377.2014. Epub 2014 Jul 23. Am J Physiol Renal Physiol. 2014. PMID: 25056355 No abstract available.
References
-
- Abkevich V, Zharkikh A, Deffenbaugh AM, Frank D, Chen Y, Shattuck D, Skolnick MH, Gutin A, Tavtigian SV. Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet. 2004;41:492-507.
-
- Autosomal recessive polycystic disease: a spectrum of three conditions. Pediatr Radiol. 1990;20:213-214.
-
- Bergmann C, Kupper F, Dornia C, Schneider F, Senderek J, Zerres K. Algorithm for efficient PKHD1 mutation screening in autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat. 2005;25:225-231.
-
- Bergmann C, Senderek J, Schneider F, Dornia C, Kupper F, Eggermann T, Rudnik-Schneborn S, Kirfel J, Moser M, Buttner R, Zerres K. PKHD1 mutations in families requesting prenatal diagnosis for autosomal recessive polycystic kidney disease (ARPKD). Hum Mut. 2004;23:487-495.
-
- Bergmann C, Senderek J, Sedlacek B, Pegiazoglou I, Puglia P, Eggermann T, Rudnik-Schneborn S, Furu L, Onuchic LF, De Baca M, Germino GG, Guay-Woodford L, Somlo S, Moser M, Buttner R, Zerres K. Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J Am Soc Nephrol. 2003;14:76-89.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases