Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr;55(4):790-9.
doi: 10.1002/mrm.20828.

Quantification of atherosclerotic plaque components using in vivo MRI and supervised classifiers

Affiliations
Free article

Quantification of atherosclerotic plaque components using in vivo MRI and supervised classifiers

J M A Hofman et al. Magn Reson Med. 2006 Apr.
Free article

Abstract

In this work we aimed to study the possibility of using supervised classifiers to quantify the main components of carotid atherosclerotic plaque in vivo on the basis of multisequence MRI data. MRI data consisting of five MR weightings were obtained from 25 symptomatic subjects. Histological micrographs of endarterectomy specimens from the 25 carotids were used as a standard of reference for training and evaluation. The set of subjects was divided in a training set (12 subjects) and an evaluation set (13 subjects). Four different classifiers and two human MRI readers determined the percentages of calcified tissue, fibrous tissue, lipid core, and intraplaque hemorrhage on the subject level for all subjects in the evaluation set. Quantification of the relatively small amounts of calcium could not be done with statistical significance by either the classifiers or the MRI readers. For the other tissues a simple Bayesian classifier (Bayes) performed better than the other classifiers and the MRI readers. All classifiers performed better than the MRI readers in quantifying the sum of hemorrhage and lipid proportions. The MRI readers overestimated the hemorrhage proportions and tended to underestimate the lipid proportions. In conclusion, this pilot study demonstrates the benefits of algorithmic classifiers for quantifying plaque components.

PubMed Disclaimer

LinkOut - more resources