Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar 10:7:14.
doi: 10.1186/1471-2121-7-14.

Aging of mesenchymal stem cell in vitro

Affiliations

Aging of mesenchymal stem cell in vitro

Mandana Mohyeddin Bonab et al. BMC Cell Biol. .

Abstract

Background: A hot new topic in medical treatment is the use of mesenchymal stem cells (MSC) in therapy. The low frequency of this subpopulation of stem cells in bone marrow (BM) necessitates their in vitro expansion prior to clinical use. We evaluated the effect of long term culture on the senescence of these cells.

Results: The mean long term culture was 118 days and the mean passage number was 9. The average number of PD decreased from 7.7 to 1.2 in the 10th passage. The mean telomere length decreased from 9.19 Kbp to 8.7 kbp in the 9th passage. Differentiation potential dropped from the 6th passage on. The culture's morphological abnormalities were typical of the Hayflick model of cellular aging.

Conclusion: We believe that MSC enter senescence almost undetectably from the moment of in vitro culturing. Simultaneously these cells are losing their stem cell characteristics. Therefore, it is much better to consider them for cell and gene therapy early on.

PubMed Disclaimer

Figures

Figure 1
Figure 1
a) Bone Marrow MSC in conventional culture (adherent, elongated cells); b) Oil red O staining showing fat accumulation in adipocytes. c & d) Van Kossas and Alkaline Phosphatase staining showing osteocytes differentiation of MSC.
Figure 2
Figure 2
Long term growth curves; each obtained from an individual donor.
Figure 3
Figure 3
Southern-blot analysis of telomere lengths of expanded MSCs derived from two BM samples during multiple passages (CH = Control-DNA, High, CL = Control-DNA, Low, P = Passage).

References

    1. Gerson SL. Mesenchymal stem cells: no longer second class marrow citizens. Nat Med. 1999;5:262–4. doi: 10.1038/6470. - DOI - PubMed
    1. Anklesaria P, Kase K, Glowacki J, Holland CA, Sakakeeny MA, Wright JA, FitzGerald TJ, Lee CY, Greenberger JS. Engraftment of a clonal bone marrow stromal cell line in vivo stimulates hematopoietic recovery from total body irradiation. Proc Natl Acad Sci U S A. 1987;84:7681–5. - PMC - PubMed
    1. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000;18:307–16. - PubMed
    1. Devine SM, Hoffman R. Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr Opin Hematol. 2000;7:358–63. doi: 10.1097/00062752-200011000-00007. - DOI - PubMed
    1. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res. 1998;16:155–62. doi: 10.1002/jor.1100160202. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources