Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;22(3):453-62.
doi: 10.1016/j.nbd.2005.12.005. Epub 2006 Mar 10.

Chronic psychosocial stress-induced impairment of hippocampal LTP: possible role of BDNF

Affiliations

Chronic psychosocial stress-induced impairment of hippocampal LTP: possible role of BDNF

A M Aleisa et al. Neurobiol Dis. 2006 Jun.

Abstract

Electrophysiological recording reveals that chronic nicotine treatment prevents stress-induced impairment of long-term potentiation (LTP) in the CA1 region of the hippocampus of anesthetized rats. We investigated the molecular mechanism of this action of nicotine in the CA1 region. Immunoblot analysis showed that chronic nicotine treatment (1 mg/kg, 2 times/day) normalized the stress-induced decrease in the basal levels of BDNF, CaMKII (total and phosphorylated; P-CaMKII), and calmodulin. Additionally, nicotine reversed the stress-induced increase in calcineurin basal levels. Chronic nicotine treatment also markedly increased the basal levels of BDNF in naïve rats. Furthermore, high-frequency stimulation (HFS), which increased the levels of P-CaMKII in control as well as nicotine-treated stressed rats, failed to increase P-CaMKII levels in untreated stressed rats. Compared to unstimulated control, the levels of both total CaMKII and calcineurin were increased after HFS in all groups including the stressed, but no changes were detected after HFS in the levels of BDNF and calmodulin. These results indicate that normalization by nicotine of the stress-induced changes in the levels of signaling molecules including BDNF may contribute to the recovery of LTP.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources