Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Apr;290(4):L622-L645.
doi: 10.1152/ajplung.00477.2005.

NF-kappa B activation as a pathological mechanism of septic shock and inflammation

Affiliations
Free article
Review

NF-kappa B activation as a pathological mechanism of septic shock and inflammation

Shu Fang Liu et al. Am J Physiol Lung Cell Mol Physiol. 2006 Apr.
Free article

Abstract

The pathophysiology of sepsis and septic shock involves complex cytokine and inflammatory mediator networks. NF-kappaB activation is a central event leading to the activation of these networks. The role of NF-kappaB in septic pathophysiology and the signal transduction pathways leading to NF-kappaB activation during sepsis have been an area of intensive investigation. NF-kappaB is activated by a variety of pathogens known to cause septic shock syndrome. NF-kappaB activity is markedly increased in every organ studied, both in animal models of septic shock and in human subjects with sepsis. Greater levels of NF-kappaB activity are associated with a higher rate of mortality and worse clinical outcome. NF-kappaB mediates the transcription of exceptional large number of genes, the products of which are known to play important roles in septic pathophysiology. Mice deficient in those NF-kappaB-dependent genes are resistant to the development of septic shock and to septic lethality. More importantly, blockade of NF-kappaB pathway corrects septic abnormalities. Inhibition of NF-kappaB activation restores systemic hypotension, ameliorates septic myocardial dysfunction and vascular derangement, inhibits multiple proinflammatory gene expression, diminishes intravascular coagulation, reduces tissue neutrophil influx, and prevents microvascular endothelial leakage. Inhibition of NF-kappaB activation prevents multiple organ injury and improves survival in rodent models of septic shock. Thus NF-kappaB activation plays a central role in the pathophysiology of septic shock.

PubMed Disclaimer

LinkOut - more resources