Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr;69(8):1464-70.
doi: 10.1038/sj.ki.5000297.

Chemical and hormonal determinants of vascular calcification in vitro

Affiliations
Free article

Chemical and hormonal determinants of vascular calcification in vitro

K Lomashvili et al. Kidney Int. 2006 Apr.
Free article

Abstract

Vascular calcification is a complex process that is dependent not only on the physicochemical effects of Ca, PO(4), and pH, but also on smooth muscle factors that may be regulated by these ions as well as by 1,25-dihydroxyvitamin D(3) (calcitriol) and parathyroid hormone (PTH). These minerals and hormones were tested in a model of medial calcification in rat aorta maintained in culture for 9 days. Calcification was quantitated as incorporation of (45)Ca, alkaline phosphatase activity was measured in aortic homogenates, and osteopontin production was measured from immunoblots of culture medium. At 1.8 mM Ca (1.46 mM free), calcification occurred at or above 2.8 mM PO(4). At 3.8 mM PO(4), calcification occurred at or above 1.10 mM free [Ca]. At a constant [Ca] x [PO(4)], calcification varied directly with [Ca] and inversely with [PO(4)]. Calcification was directly related to pH between 7.19 and 7.50 but not altered by PTH or calcitriol. Alkaline phosphatase activity and osteopontin production were increased by Ca, PO(4), calcitriol, and PTH. We conclude that calcification of rat aorta in vitro requires elevation of both [Ca] and [PO(4)], and that [Ca] rather than [PO(4)] or the product of the two is the dominant determinant. The induction of alkaline phosphatase and osteopontin indicates that Ca and PO(4) have effects in addition to simple physicochemical actions. Although PTH and calcitriol did not increase calcification in vivo, they have effects on smooth muscle that could influence calcification in vivo. Calcification is enhanced by alkalinity within the range produced during hemodialysis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources