Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;128(1):142-9.
doi: 10.1115/1.2132374.

A theoretical model of enlarging intracranial fusiform aneurysms

Affiliations

A theoretical model of enlarging intracranial fusiform aneurysms

S Baek et al. J Biomech Eng. 2006 Feb.

Abstract

The mechanisms by which intracranial aneurysms develop, enlarge, and rupture are unknown, and it remains difficult to collect the longitudinal patient-based information needed to improve our understanding. We submit, therefore, that mathematical models hold promise by allowing us to propose and test competing hypotheses on potential mechanisms of aneurysmal enlargement and to compare predicted outcomes with limited clinical information--in this way, we may begin to narrow the possible mechanisms and thereby focus experimental studies. In this paper, we present a constrained mixture model of evolving thin-walled, fusiform aneurysms and compare multiple competing hypotheses with regard to the production, removal, and alignment of the collagen that provides the structural integrity of the wall. The results show that this type of approach has the capability to infer potential means by which lesions enlarge and whether such changes are likely to produce a stable or unstable process. Such information can better direct the requisite histopathological examinations, particularly on the need to quantify collagen orientations as a function of lesion geometry.

PubMed Disclaimer

Publication types

LinkOut - more resources