Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan:432:283-312.
doi: 10.1113/jphysiol.1991.sp018385.

Role of Ca2+ channel in cardiac excitation-contraction coupling in the rat: evidence from Ca2+ transients and contraction

Affiliations

Role of Ca2+ channel in cardiac excitation-contraction coupling in the rat: evidence from Ca2+ transients and contraction

L Cleemann et al. J Physiol. 1991 Jan.

Abstract

1. Optical methods were used to measure simultaneously unloaded cell shortening and intracellular Ca2+ transients in whole-cell voltage clamped rat ventricular myocytes. Red light (greater than 670 nm) was used to measure cell shortening with a linear photodiode array. The dyes Fura-2 (Kd = 140 nM) and Mag-Fura-2 (Kd = 44 microM) were used as Ca2+ indicators with fluorescence excitation at 340 and 410 nm and emission at 510 nm. 2. Repeated measurements at 6 s intervals as 0.4 mM-Fura-2 diffused into the cell from the tip of the voltage clamp pipette showed no decrease in the rate of rise and peak value of the intracellular Ca2+ transient and only a small suppression of cell shortening, suggesting that the molecular mechanisms regulating the Ca2+ release were not significantly altered by the buffering capacity of the Fura-2. 3. Experiments in which the sarcoplasmic reticulum (SR) was depleted of Ca2+ either by exposure to caffeine or by repeated brief (20 ms) voltage clamp depolarizations confirm that the SR is the major source of activator Ca2+. 4. Mag-Fura-2 (1 or 5 mM) was used to register the initial rapid development of the [Ca2+]i transient but the later time course of the Ca2+ transients measured with this dye was obscured by motion artifacts resulting from cell shortening. 5. Both Fura-2 and Mag-Fura-2 showed that depolarization to 0 mV from a holding potential of -80 mV resulted in a [Ca2+]i transient which developed with a delay of 3-9 ms and approached its peak value in an additional 8-19 ms. Both Ca2+ indicators also showed that the Ca2+ transient approached its peak value more slowly as the clamped membrane potential was made increasingly more positive. 6. The voltage dependencies of the Ca2+ signal (Fura-2) and cell shortening were both bell-shaped and were qualitatively similar to the voltage dependence of Ca2+ current simultaneously measured. This was observed with holding potentials of both -40 and -80 mV. 7. Comparison of the temporal relation of the Ca2+ current, ICa, and intracellular Ca2+ transient (Fura-2) and cell shortening at different membrane potentials showed that Ca2+ transient measured 25 ms into the depolarization correlated closely to the integral of the Ca2+ current measured prior to this time. Cell shortening, on the other hand, peaked about 100 ms later and correlated with measurements of the Ca2+ activity at the later time.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

References

    1. J Physiol. 1960 Sep;153:386-403 - PubMed
    1. Pflugers Arch. 1983 Sep;398(4):284-97 - PubMed
    1. Proc Natl Acad Sci U S A. 1988 Mar;85(6):2009-13 - PubMed
    1. J Physiol. 1988 Nov;405:233-55 - PubMed
    1. J Physiol. 1988 Sep;403:151-92 - PubMed

Publication types

LinkOut - more resources