Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2006 Nov;8(7):729-35.
doi: 10.1016/j.ejheart.2006.02.001. Epub 2006 Mar 13.

Carvedilol reduces exercise-induced hyperventilation: A benefit in normoxia and a problem with hypoxia

Affiliations
Free article
Randomized Controlled Trial

Carvedilol reduces exercise-induced hyperventilation: A benefit in normoxia and a problem with hypoxia

Piergiuseppe Agostoni et al. Eur J Heart Fail. 2006 Nov.
Free article

Abstract

Aims: To evaluate whether carvedilol influences exercise hyperventilation and the ventilatory response to hypoxia in heart failure (HF).

Methods and results: Fifteen HF patients participated to this double blind, randomised, placebo controlled, cross-over study. Patients were evaluated by quality of life questionnaire, echocardiography, pulmonary function and cardiopulmonary exercise tests (ramp and constant workload) both in normoxia (FiO2 = 21%) and hypoxia (FiO2 = 16%, equivalent to a simulated altitude of 2000 m). Carvedilol improved clinical condition and reduced left ventricle size, but had no effect on lung mechanics. In normoxia during exercise, ventilation was lower, V(CO2) unchanged and PaCO2 (constant workload) or PetCO2 (ramp) higher with carvedilol, exercise capacity was unchanged (peak workload 92+/-22 and 90+/-22W for placebo and carvedilol, respectively). Abnormal V(E)/V(CO2) slope was reduced by carvedilol. Hypoxia increased ventilation but less with carvedilol; exercise capacity decreased to 87+/-21W (placebo) and to 80+/-11 W (carvedilol, p < 0.01). With hypoxia, carvedilol decreased V(E)/V(CO2) slope. At constant workload exercise with hypoxia, PaO2 decreased to 69+/-6 mm Hg (placebo) and to 64+/-5 (carvedilol, p < 0.01).

Conclusion: Carvedilol reduced hyperventilation possibly by reducing peripheral chemoreflex sensitivity as suggested by PaCO2 increase with normoxia and PaO2 decrease with hypoxia without V(CO2) and V(D)/V(T) changes. Lessening hyperventilation is beneficial when breathing normally, but detrimental when hyperventilation is needed for exercise at high altitude.

PubMed Disclaimer

Publication types

MeSH terms