Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 May;216(5):265-76.
doi: 10.1007/s00427-005-0051-6. Epub 2006 Mar 14.

Ion flow regulates left-right asymmetry in sea urchin development

Affiliations
Comparative Study

Ion flow regulates left-right asymmetry in sea urchin development

Taku Hibino et al. Dev Genes Evol. 2006 May.

Abstract

The degree of conservation among phyla of early mechanisms that pattern the left-right (LR) axis is poorly understood. Larvae of sea urchins exhibit consistently oriented LR asymmetry. The main part of the adult rudiment is formed from the left coelomic sac of larvae, the left hydrocoel. Although this left preference is conserved among all echinoderm larvae, its mechanism is largely not understood. Using two marker genes, HpNot and HpFoxFQ-like, which are asymmetrically expressed during larval development of the sea urchin Hemicentrotus pulcherrimus, we examined in this study the possibility that the recently discovered ion flux mechanism controls asymmetry in sea urchins as it does in several vertebrate species. Several ion-transporter inhibitors were screened for the ability to alter the expression of the asymmetric marker genes. Blockers of the H(+)/K(+)-ATPase (omeprazole, lansoprazole and SCH28080), as well as a calcium ionophore (A23187), significantly altered the normal sidedness of asymmetric gene expression. Exposure to omeprazole disrupted the consistent asymmetry of adult rudiment formation in larvae. Immuno-detection revealed that H(+)/K(+)-ATPase-like antigens in sea urchin embryos were present through blastula stage and exhibited a striking asymmetry being present in a single blastomere in 32-cell embryos. These results suggest that, as in vertebrates, endogenous spatially-regulated early transport of H(+) and/or K(+), and also of Ca(2+), functions in the establishment of LR asymmetry in sea urchin development.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Am J Physiol. 1998 May;274(5 Pt 1):C1417-23 - PubMed
    1. J Pharmacol Exp Ther. 1988 Sep;246(3):1104-7 - PubMed
    1. Cell. 2005 May 20;121(4):633-44 - PubMed
    1. Nature. 2002 Jul 4;418(6893):96-9 - PubMed
    1. Development. 1996 Feb;122(2):521-6 - PubMed

Publication types

LinkOut - more resources