Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr 15;15(8):1343-53.
doi: 10.1093/hmg/ddl054. Epub 2006 Mar 14.

SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development

Affiliations

SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development

Peng-Peng Zhu et al. Hum Mol Genet. .

Abstract

The hereditary spastic paraplegias (HSPs) (SPG1-29) comprise a group of inherited neurological disorders characterized principally by spastic lower extremity weakness due to a length-dependent, retrograde axonopathy of corticospinal motor neurons. Mutations in the gene encoding the dynamin superfamily member atlastin-1, an oligomeric GTPase highly localized to the Golgi apparatus in the adult brain, are responsible for SPG3A, a common autosomal dominant HSP. A distinguishing feature of SPG3A is its frequent early onset, raising the possibility that developmental abnormalities may be involved in its pathogenesis. Here, we demonstrate that several missense SPG3A mutant atlastin-1 proteins have impaired GTPase activity and thus may act in a dominant-negative, loss-of-function manner by forming mixed oligomers with wild-type atlastin-1. Using confocal and electron microscopies, we have also found that atlastin-1 is highly enriched in vesicular structures within axonal growth cones and varicosities as well as at axonal branch points in cultured cerebral cortical neurons, prefiguring a functional role for atlastin-1 in axonal development. Indeed, knock-down of atlastin-1 expression in these neurons using small hairpin RNAs reduces the number of neuronal processes and impairs axon formation and elongation during development. Thus, the "long axonopathy" in early-onset SPG3A may result from abnormal development of axons because of loss of atlastin-1 function.

PubMed Disclaimer

Publication types

MeSH terms