Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Apr 1;119(Pt 7):1307-19.
doi: 10.1242/jcs.02835. Epub 2006 Mar 14.

The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the activity of PLCepsilon

Affiliations
Comparative Study

The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the activity of PLCepsilon

Aude S Ada-Nguema et al. J Cell Sci. .

Erratum in

  • J Cell Sci. 2006 Oct 15;119(Pt 20):4364. Hofman, Jake M [added]; Wiggins, Chris H [added]

Abstract

R-Ras, an atypical member of the Ras subfamily of small GTPases, enhances integrin-mediated adhesion and signaling through a poorly understood mechanism. Dynamic analysis of cell spreading by total internal reflection fluorescence (TIRF) microscopy demonstrated that active R-Ras lengthened the duration of initial membrane protrusion, and promoted the formation of a ruffling lamellipod, rich in branched actin structures and devoid of filopodia. By contrast, dominant-negative R-Ras enhanced filopodia formation. Moreover, RNA interference (RNAi) approaches demonstrated that endogenous R-Ras contributed to cell spreading. These observations suggest that R-Ras regulates membrane protrusions through organization of the actin cytoskeleton. Our results suggest that phospholipase Cepsilon (PLCepsilon) is a novel R-Ras effector mediating the effects of R-Ras on the actin cytoskeleton and membrane protrusion, because R-Ras was co-precipitated with PLCepsilon and increased its activity. Knockdown of PLCepsilon with siRNA reduced the formation of the ruffling lamellipod in R-Ras cells. Consistent with this pathway, inhibitors of PLC activity, or chelating intracellular Ca2+ abolished the ability of R-Ras to promote membrane protrusions and spreading. Overall, these data suggest that R-Ras signaling regulates the organization of the actin cytoskeleton to sustain membrane protrusion through the activity of PLCepsilon.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources