Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991:46:77-87.

Role of the membrane-cytoskeleton in the spatial organization of the Na,K-ATPase in polarized epithelial cells

Affiliations
  • PMID: 1653995
Review

Role of the membrane-cytoskeleton in the spatial organization of the Na,K-ATPase in polarized epithelial cells

W J Nelson et al. Soc Gen Physiol Ser. 1991.

Abstract

Vectorial function of polarized transporting epithelia requires the establishment and maintenance of a nonrandom distribution of Na,K-ATPase on the cell surface. In many epithelia, the Na,K-ATPase is located at the basal-lateral domain of the plasma membrane. The mechanisms involved in the spatial organization of the Na,K-ATPase in these cells are poorly understood. We have been investigating the roles of regulated cell-cell contacts and assembly of the membrane-cytoskeleton in the development of the cell surface polarity of Na,K-ATPase. We have shown that the Na,K-ATPase colocalizes with distinct components of the membrane-cytoskeleton in polarized Madin-Darby canine kidney (MDCK) epithelial cells. Significantly, we showed directly that Na,K-ATPase is a high affinity binding site for the membrane-cytoskeletal proteins ankyrin and fodrin, and that all three proteins exist in a high molecular weight protein complex that also contains the cell adhesion molecule (CAM) uvomorulin. We have proposed that these interactions are important in the assembly at sites of cell-cell contact of the membrane-cytoskeleton, which in turn initiates the development of the nonrandom distribution of the Na,K-ATPase. To directly investigate the functional significance of these protein-protein interactions in the spatial organization of the Na,K-ATPase, we analyzed the distribution of the Na,K-ATPase in fibroblasts transfected with a cDNA encoding the epithelial CAM, uvomorulin. Our results showed that expression of uvomorulin is sufficient to induce a redistribution of Na,K-ATPase from an unrestricted distribution over the entire cell surface in nontransfected cells to a restricted distribution at sites of uvomorulin-mediated cell-cell contacts in the transfected cells; this distribution is similar to that in polarized epithelial cells. This restricted distribution of the Na,K-ATPase occurred in the absence of tight junctions, but coincided with the reorganization of the membrane-cytoskeleton. These results support a model in which the epithelial CAM uvomorulin functions as an inducer of cell surface polarity of Na,K-ATPase through cytoplasmic linkage to the membrane-cytoskeleton.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances