Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;27(7):1489-96.
doi: 10.1093/carcin/bgl012. Epub 2006 Mar 16.

Zinc deficiency potentiates induction and progression of lingual and esophageal tumors in p53-deficient mice

Affiliations

Zinc deficiency potentiates induction and progression of lingual and esophageal tumors in p53-deficient mice

Louise Y Y Fong et al. Carcinogenesis. 2006 Jul.

Abstract

Upper aerodigestive tract (UADT) cancer, including oral and esophageal cancer, is an important cause of cancer deaths worldwide. Patients with UADT cancer are frequently zinc deficient (ZD) and show a loss of function of the pivotal tumor suppressor gene p53. The present study examined whether zinc deficiency in collaboration with p53 insufficiency (p53+/-) promotes lingual and esophageal tumorigenesis in mice exposed to low doses of the carcinogen 4-nitroquinoline 1-oxide. In wild-type mice, ZD significantly increased the incidence of lingual and esophageal tumors from 0% in zinc sufficient (ZS) ZS:p53+/+ mice to approximately 40%. On the p53+/- background, ZD:p53+/- mice had significantly greater tumor incidence and multiplicity than ZS:p53+/- and ZD:p53+/+ mice, with a high frequency of progression to malignancy. Sixty-nine and 31% of ZD:p53+/- lingual and esophageal tumors, respectively, were squamous cell carcinoma versus 19 and 0% of ZS:p53+/- tumors (tongue, P = 0.003; esophagus, P = 0.005). Immunohistochemical analysis revealed that the increased cellular proliferation observed in preneoplastic lingual and esophageal lesions, as well as invasive carcinomas, was accompanied by overexpression of cytokeratin 14, cyclooxygenase-2 and metallothionein. In summary, a new UADT cancer model is developed in ZD:p53+/- mouse that recapitulates aspects of the human cancer and provides opportunities to probe the genetic changes intrinsic to UADT carcinogenesis and to test strategies for prevention and reversal of this deadly cancer.

PubMed Disclaimer

Publication types

MeSH terms