Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Aug:439:181-214.
doi: 10.1113/jphysiol.1991.sp018663.

Double-pulse calcium channel current facilitation in adult rat sympathetic neurones

Affiliations

Double-pulse calcium channel current facilitation in adult rat sympathetic neurones

S R Ikeda. J Physiol. 1991 Aug.

Abstract

1. Double-pulse facilitation of Ca2+ channel currents in enzymatically dispersed adult rat superior cervical ganglion neurones was investigated using the whole-cell variant of the patch-clamp technique. Voltage-clamp recordings were performed at room temperature (21-24 degrees C) in solutions designed to isolate Ca2+ channel currents. 2. Ba2+ currents, elicited by a 0 mV test pulse, were increased in amplitude when preceded by a 40 ms pulse to voltages greater than 0 mV. The magnitude of facilitation was dependent on pre-pulse voltage and reached a maximum of 50% (i.e. 1.5 x the current amplitude elicited without a pre-pulse) at a pre-pulse voltage of +80 mV. Half-maximal facilitation occurred at about +25 mV. A small decrease (-6%) in test pulse amplitude was present at pre-pulse voltages between -40 and 0 mV. The magnitude of facilitation was also dependent on test pulse voltage. Facilitation was greatest between test pulse voltages of -10 and 0 mV. 3. Facilitation slowly decreased during prolonged (1 h) dialysis of the neurone even though the Ba2+ current amplitude was well maintained. 4. Increasing the pre-pulse duration over the range 0-120 ms produced an exponential increase in facilitation with a time constant of 17.3 ms. Conversely, lengthening the interpulse duration over the range 5-915 ms, while maintaining a constant pre-pulse amplitude and duration, resulted in an exponential decrease in facilitation with a time constant of 197 ms. 5. At a test potential of 0 mV, the decay of the facilitated Ba2+ current component was fitted to a double exponential function with time constants of about 25 and 150 ms. The time constants had little pre-pulse voltage dependence between +30 to +80 mV. 6. The initial rising phase of both the control and facilitated Ba2+ current were reasonably well described by a single exponential (tau rise) after a delay of 300 microseconds. The tau rise versus test pulse potential relationship was 'bell shaped' over the test pulse voltage of -20 to +30 mV reaching a maximum near -5 mV. tau rise was similar for control and facilitated currents except at potentials greater than +10 mV where the rise of the facilitated current was accelerated. 7. Control and facilitated activation curves, as derived from tail current amplitudes, were described by the sum of two Boltzmann functions. A facilitating pre-pulse produced an increase in the proportion of the current contributed by the component activated at more hyperpolarized test potentials.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Physiol. 1988 Dec;407:405-32 - PubMed
    1. J Neurochem. 1978 Jul;31(1):13-9 - PubMed
    1. J Physiol. 1989 May;412:493-512 - PubMed
    1. Nature. 1990 Nov 8;348(6297):125-32 - PubMed
    1. Neurosci Lett. 1990 Sep 18;117(3):275-9 - PubMed

Publication types

LinkOut - more resources