Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;48(1):5-22.
doi: 10.1002/bimj.200410165.

Parameter estimation and goodness-of-fit in log binomial regression

Affiliations

Parameter estimation and goodness-of-fit in log binomial regression

L Blizzard et al. Biom J. 2006 Feb.

Abstract

An estimate of the risk, adjusted for confounders, can be obtained from a fitted logistic regression model, but it substantially over-estimates when the outcome is not rare. The log binomial model, binomial errors and log link, is increasingly being used for this purpose. However this model's performance, goodness of fit tests and case-wise diagnostics have not been studied. Extensive simulations are used to compare the performance of the log binomial, a logistic regression based method proposed by Schouten et al. (1993) and a Poisson regression approach proposed by Zou (2004) and Carter, Lipsitz, and Tilley (2005). Log binomial regression resulted in "failure" rates (non-convergence, out-of-bounds predicted probabilities) as high as 59%. Estimates by the method of Schouten et al. (1993) produced fitted log binomial probabilities greater than unity in up to 19% of samples to which a log binomial model had been successfully fit and in up to 78% of samples when the log binomial model fit failed. Similar percentages were observed for the Poisson regression approach. Coefficient and standard error estimates from the three models were similar. Rejection rates for goodness of fit tests for log binomial fit were around 5%. Power of goodness of fit tests was modest when an incorrect logistic regression model was fit. Examples demonstrate the use of the methods. Uncritical use of the log binomial regression model is not recommended.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources