Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;5(6):1095-104.
doi: 10.1074/mcp.M500387-MCP200. Epub 2006 Mar 17.

Label-free semiquantitative peptide feature profiling of human breast cancer and breast disease sera via two-dimensional liquid chromatography-mass spectrometry

Affiliations
Free article

Label-free semiquantitative peptide feature profiling of human breast cancer and breast disease sera via two-dimensional liquid chromatography-mass spectrometry

Qinhua Cindy Ru et al. Mol Cell Proteomics. 2006 Jun.
Free article

Abstract

A label-free semiquantitative peptide feature profiling method was developed in response to challenges associated with analysis of two-dimensional liquid chromatography-tandem mass spectrometry data. One hundred twenty human sera (49 from invasive breast carcinoma patients, 26 from non-invasive breast carcinoma patients, 35 from benign breast disease patients, and 10 from normal controls) were repeatedly analyzed using a standardized two-dimensional liquid chromatography-mass spectrometry method. Data were extracted using the novel semiquantitative peptide feature profiling method, which is based on comparisons of normalized relative ion intensities. Hierarchical cluster analyses and principle component analyses were used to evaluate the predicative capability of the extracted data, and results were promising. Extracted data were also randomly assigned to either a training group (65%) or to a test group (35%) for artificial neural network modeling. Models best identified invasive breast carcinomas (212 predictions, 94% accurate) and benign non-neoplastic breast disease (96 predictions, 81.3% accurate). These results suggest that, after further development, the novel method may be useful for large scale clinical proteomic profiling.

PubMed Disclaimer

Publication types

LinkOut - more resources