Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Apr;28(4):344-54.
doi: 10.1002/bies.20382.

Why photoreceptors die (and why they don't)

Affiliations
Review

Why photoreceptors die (and why they don't)

Gordon L Fain. Bioessays. 2006 Apr.

Abstract

Light can kill the photoreceptors of the eye, not only very bright direct sunlight, but more moderate illumination if the light is present continuously. Recent experiments show that rod apoptosis can be triggered by strong and constant activation of transduction, and that death can be prevented if transduction is inhibited even though the eye is illuminated. Vitamin A deficiency and genetically inherited diseases, such as some forms of retinitis pigmentosa and Leber congenital amaurosis, appear to kill like this: transduction is activated at a high rate and continuously, and this causes the rods to die. Why does transduction kill? Our best guess is that continuous activation produces a prolonged lowering of the Ca(2+) concentration, which is also thought to kill neurons in tissue culture and during the development of the nervous system. To prevent death in constant light, rods have evolved protective mechanisms including modulation of channels and ion transport to keep the Ca(2+) from going too low. Prolonged light exposure also causes migration of transduction proteins from one part of the cell to another and a reversible shortening of the rod outer segments, the part of the cell that contains the pigment rhodopsin. All of these mechanisms are at work in the normal eye to reduce transduction and prevent the Ca(2+) concentration from dropping too low for too long a time. That most of us retain our vision our entire lives is a testament to their effectiveness.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources