Evaluation of systems for reducing the transmission of porcine reproductive and respiratory syndrome virus by aerosol
- PMID: 16548329
- PMCID: PMC1325091
Evaluation of systems for reducing the transmission of porcine reproductive and respiratory syndrome virus by aerosol
Abstract
The purpose of this study was to compare 3 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, low-cost filtration, and ultraviolet light (UV) irradiation. The HEPA-filtration system involved a pre-filter screen, a bag filter (EU8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (pre-filter), a fiberglass furnace filter, and an electrostatic furnace filter. For UV irradiation, a lamp emitted UVC radiation at 253.7 nm. No form of intervention was used in the control group. The experimental facilities consisted of 2 chambers connected by a 1.3-m-long duct. Recipient pigs, housed in chamber 2, were exposed to artificial aerosols created by a mechanically operated mister containing modified live PRRSV vaccine located in chamber 1. Aerosol transmission of PRRSV occurred in 9 of the 10 control replicates, 8 of the 10 UVC-irradiation replicates, 4 of the 10 low-cost-filtration replicates, and 0 of the 10 HEPA-filtration replicates. When compared with no intervention, HEPA filtration and low-cost filtration significantly reduced PRRSV transmission (P < 0.0005 and = 0.0286, respectively), whereas UV irradiation had no effect (P = 0.5). However, low-cost filtration and UV irradiation were significantly less effective (P = 0.043 and P < 0.0005, respectively) than HEPA filtration. In conclusion, under the conditions of this study, HEPA filtration was significantly more effective at reducing aerosol transmission of PRRSV than the other methods evaluated.
L’objectif de cette étude était de comparer trois méthodes pour réduire la transmission par aérosol du virus du syndrome respiratoire et reproducteur porcin (PRRSV) : filtration de l’air à l’aide de filtre à haute efficacité [HEPA], filtration de l’air peu dispendieuse, et irradiation par rayons ultraviolets. La filtration HEPA était constituée d’un pré-filtre, d’un filtre ensaché (cote EU8) et d’un filtre HEPA (cote EU13). Le système peu dispendieux comportait un moustiquaire (pré-filtre), un filtre de fournaise en fibre de verre et un filtre électro-statique de fournaise. Pour l’irradiation par UV, une lampe émettant des rayons UVC à 253,7 nm était utilisée. Pour le groupe témoin aucune forme d’intervention n’était utilisée. L’installation expérimentale consistait en 2 chambres reliées par un conduit d’une longueur de 1,3 m qui contenait les unités de traitement de l’air. Les porcs receveurs, logés dans la chambre 2, ont été exposés à des aérosols générés par un atomiseur opéré mécaniquement contenant du vaccin PRRSV vivant modifié et localisé dans la chambre 1. La transmission par aérosol du PRRSV s’est produite lors de 9 des 10 réplications témoin; lors de 8 des 10 réplications avec l’irradiation par UVC; lors de 4 des 10 réplications avec traitement par le système de filtration peu dispendieux; et 0 des 10 réplications lors de l’utilisation du système HEPA. Par comparaison avec le groupe témoin, la filtration HEPA et la filtration avec le système peu dispendieux ont diminué significativement la transmission du PRRSV (P < 0,0005 et P = 0,0286, respectivement), alors que l’irradiation UV n’avait aucun effet (P = 0,5). Toutefois, la filtration peu dispendieuse et l’irradiation UV étaient significativement moins efficaces (respectivement P = 0,043 et P < 0,0005) que la filtration HEPA. En conclusion, dans les conditions expérimentales testées, la filtration HEPA s’est avérée significativement plus efficace que les autres méthodes évaluées pour réduire la transmission par aérosol du PRRSV.
(Traduit par Docteur Serge Messier)
Figures




Similar articles
-
Further evaluation of alternative air-filtration systems for reducing the transmission of Porcine reproductive and respiratory syndrome virus by aerosol.Can J Vet Res. 2006 Jul;70(3):168-75. Can J Vet Res. 2006. PMID: 16850938 Free PMC article.
-
Evaluation of an air-filtration system for preventing aerosol transmission of Porcine reproductive and respiratory syndrome virus.Can J Vet Res. 2005 Oct;69(4):293-8. Can J Vet Res. 2005. PMID: 16479728 Free PMC article.
-
Influence of isolate pathogenicity on the aerosol transmission of Porcine reproductive and respiratory syndrome virus.Can J Vet Res. 2007 Jan;71(1):23-7. Can J Vet Res. 2007. PMID: 17193878 Free PMC article.
-
Use of a production region model to assess the efficacy of various air filtration systems for preventing airborne transmission of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae: results from a 2-year study.Virus Res. 2010 Dec;154(1-2):177-84. doi: 10.1016/j.virusres.2010.07.022. Epub 2010 Aug 3. Virus Res. 2010. PMID: 20667494 Review.
-
Aerosol Detection and Transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): What Is the Evidence, and What Are the Knowledge Gaps?Viruses. 2019 Aug 3;11(8):712. doi: 10.3390/v11080712. Viruses. 2019. PMID: 31382628 Free PMC article. Review.
Cited by
-
The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of ultraviolet radiation.PLoS One. 2022 Apr 8;17(4):e0266487. doi: 10.1371/journal.pone.0266487. eCollection 2022. PLoS One. 2022. PMID: 35395010 Free PMC article.
-
Effect of temperature and relative humidity on ultraviolet (UV 254) inactivation of airborne porcine respiratory and reproductive syndrome virus.Vet Microbiol. 2012 Sep 14;159(1-2):47-52. doi: 10.1016/j.vetmic.2012.03.044. Epub 2012 Apr 6. Vet Microbiol. 2012. PMID: 22542268 Free PMC article.
-
Impact of different supply air and recirculating air filtration systems on stable climate, animal health, and performance of fattening pigs in a commercial pig farm.PLoS One. 2018 Mar 20;13(3):e0194641. doi: 10.1371/journal.pone.0194641. eCollection 2018. PLoS One. 2018. PMID: 29558482 Free PMC article.
-
Further evaluation of alternative air-filtration systems for reducing the transmission of Porcine reproductive and respiratory syndrome virus by aerosol.Can J Vet Res. 2006 Jul;70(3):168-75. Can J Vet Res. 2006. PMID: 16850938 Free PMC article.
-
Role of viral bioaerosols in nosocomial infections and measures for prevention and control.J Aerosol Sci. 2018 Mar;117:200-211. doi: 10.1016/j.jaerosci.2017.11.011. Epub 2017 Dec 2. J Aerosol Sci. 2018. PMID: 32226118 Free PMC article. Review.
References
-
- Dee SA, Joo HS, Pijoan C. Controlling the spread of PRRS virus in the breeding herd through management of the gilt pool. Swine Health Prod. 1994;3:64–69.
-
- Christopher-Hennings J, Benfield DA, Nelson E, et al. Persistence of PRRS virus in serum and semen of adult boars. J Vet Diagn Invest. 1995;7:456–464. - PubMed
-
- Mortensen S, Stryhn H, Sogaard R, et al. Risk factors for infection of herds with porcine reproductive and respiratory syndrome virus. Prev Vet Med. 2002;53:83–101. - PubMed
-
- Kristensen CS, Bøtner A, Takai H, Nielsen JP, Jorsal SE. Experimental airborne transmission of PRRS virus. Vet Microbiol. 2004;99:197–202. - PubMed
-
- Wills RW, Zimmerman JJ, Swenson SL, et al. Transmission of PRRSV by direct, close or indirect contact. Swine Health Prod. 1997;5:213–218.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources