Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr;8(4):690-703.
doi: 10.1111/j.1462-5822.2005.00662.x.

Streptococcus pyogenes bacteria modulate membrane traffic in human neutrophils and selectively inhibit azurophilic granule fusion with phagosomes

Affiliations

Streptococcus pyogenes bacteria modulate membrane traffic in human neutrophils and selectively inhibit azurophilic granule fusion with phagosomes

Leïla Staali et al. Cell Microbiol. 2006 Apr.

Abstract

We recently reported that the human pathogen Streptococcus pyogenes of the M1 serotype survives and replicates intracellularly after being phagocytosed by human neutrophils. These data raised the possibility that the generation of reactive oxygen metabolites by neutrophils, and the release of microbicidal molecules from their azurophilic and specific granules into phagosomes, can be modulated by S. pyogenes bacteria expressing surface-associated M and/or M-like proteins. We now demonstrate, using flow cytometry, immunofluorescence microscopy and transmission electron microscopy, that live wild-type S. pyogenes, after internalization by human neutrophils, inhibits the fusion of azurophilic granules with phagosomes. In contrast, azurophilic granule-content is efficiently delivered to phagosomes containing bacteria not expressing M and/or M-like proteins. Also, when heat-killed wild-type bacteria are used as the phagocytic prey, fusion of azurophilic granules with phagosomes is observed. The inhibition caused by live wild-type S. pyogenes is specific for azurophilic granule-phagosome fusion, because the mobilization of specific granules and the production of reactive oxygen species are induced to a similar extent by all strains tested. In conclusion, our results demonstrate that viable S. pyogenes bacteria expressing M and M-like proteins selectively prevent the fusion of azurophilic granules with phagosomes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources