Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;44(1):38-42.
doi: 10.1016/j.plaphy.2006.01.003. Epub 2006 Feb 6.

Arabidopsis leaf necrosis caused by simulated acid rain is related to the salicylic acid signaling pathway

Affiliations

Arabidopsis leaf necrosis caused by simulated acid rain is related to the salicylic acid signaling pathway

Youngmi Lee et al. Plant Physiol Biochem. 2006 Jan.

Abstract

Arabidopsis leaves treated with simulated acid rain (SiAR) showed phenotypes similar to necrotic lesions caused by biotic stresses like Pseudomonad infiltration. Exposure of Arabidopsis to SiAR resulted in the up-regulation of genes known to be induced by the salicylic acid (SA)-mediated pathogen resistance response. The expression of enhanced disease susceptibility (EDS), nonexpressor of PR (NPR) and pathogen-related 1 (PR1), all of which are involved in the salicylic acid signaling pathway, were increased after SiAR exposure. However, vegetative storage protein (VSP), a member of the jasmonic acid pathway did not show a significant change in transcript level. SiAR treatment of transgenic plants expressing salicylate hydroxylase (Nah-G), which prevents the accumulation of salicylic acid, underwent more extensive necrosis than wild-type plants, indicating that the signaling pathway activated by SiAR may overlap with the SA-dependent, systemic acquired resistance pathway. Both Col-0 and Nah-G plants showed sensitivity to SiAR and sulfuric SiAR (S-SiAR) by developing necrotic lesions. Neither Col-0 plants nor Nah-G plants showed sensitivity to nitric SiAR (N-SiAR). These results suggest that SiAR activates at least the salicylic acid pathway and activation of this pathway is sensitive to sulfuric acid.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources