Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Sep 24;1094(3):323-9.
doi: 10.1016/0167-4889(91)90093-d.

Platelet activation by diacylglycerol or ionomycin is inhibited by nitroprusside

Affiliations

Platelet activation by diacylglycerol or ionomycin is inhibited by nitroprusside

M G Doni et al. Biochim Biophys Acta. .

Abstract

Experiments were performed to elucidate the role of cyclic guanosine monophosphate (cGMP) on platelet activation induced by protein kinase C (PKC) activators and calcium ionophore. Human platelets were pretreated with acetylsalicylic acid and with hirudin and apyrase. Aggregation and ATP secretion in response to the PKC activators 4 beta-phorbol 12-myristate 13-acetate (PMA) and 1-oleoyl 2-acetylglycerol (OAG) were inhibited by the nitrovasodilator sodium nitroprusside (SNP), an activator of guanylate cyclase, and by 8-bromo-cyclic GMP (8-Br-cGMP). The experiments were performed in the presence of M&B 22948, an inhibitor of cGMP phosphodiesterase. SNP and 8-Br-cGMP also inhibited platelet aggregation and secretion evoked by the ionophore ionomycin. In fura-2 loaded platelets SNP did not affect basal cytosolic Ca2+ level nor the rise induced by low concentrations of ionomycin, both in the presence and absence of extracellular Ca2+. The phosphorylation of the 47 and 20 kDa protein induced by ionomycin or PMA were not significantly decreased by SNP or 8-Br-cGMP. The present results suggest that cGMP is able to inhibit both the PKC and the Ca(2+)-dependent pathways leading to platelet activation by interfering, similarly to cAMP, with processes following protein phosphorylation, close to the effector systems.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources